
Lecture Notes:

Dynamical Systems and PDEs

Christian Kuehn

Institute for Analysis and Scientific Computing,

Vienna University of Technology, 1040 Vienna, Austria

April 29, 2015

Preface

This document is eventually (i.e. hopefully) going to develop into an in-
troductory book on how to use various dynamical systems ideas to study
properties of solutions of partial differential equations (PDEs). Part of
these lecture notes have been used in teaching at TU Vienna in 2014/2015.

As background knowledge a first course in PDEs is essential, e.g. based
upon parts of [Eva02]. Some basic knowledge of functional analysis [Rud91],
ODEs and/or dynamical systems [HSD03] would be desirable but not strictly
necessary as one may look up the required results that we use as tools rel-
atively easily along the way. Furthermore, the cited literature references
are definitely not exhaustive and just provide some pointers to the litera-
ture; these notes provide basic ideas and the reader is strongly encouraged
to explore particular topics in more detail. Currently, the notes are only
available without figures, which have been drawn in the lectures.

Note carefully: The lecture notes are a work in progress and should
be used with caution! Please report any errors or inaccuracies you find to

ck274@cornell.edu

So far, I have the pleasure to thank Annalisa Iuorio, Tobias Jawecki, Stefan
Portisch, Pedro Aceves Sanchez, Elisabeth Schiessler, and Lara Trussardi
for alerting me of several mistakes and misprints in previous versions of
these notes.
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1 A Whirlwind Introduction

The goal is to study prototypical models of PDEs for some unknown func-
tion u with

x ∈ Ω ⊆ RN , t ∈ [0, T ), u = u(x, t), u : Ω× [0, T ) → R

where Ω is a bounded domain with sufficiently smooth boundary and T > 0
is a final time up to which we study the dynamics; frequently, the one-
dimensional spatial case x ∈ R and long-time dynamics with T = +∞ will
be considered. The following notations for derivatives will be used

∆u :=

N∑

n=1

∂2u

∂x2n
, ut :=

∂u

∂t
, ∂xnu :=

∂u

∂xn
, ∇u := (ux1

, . . . , uxN
)⊤ ,

where (·)⊤ denotes transpose (so the gradient ∇u is a column vector) and
∆u is the Laplacian of u. We shall use |·| to denote absolute value and ‖·‖
for norms; where the Euclidean norm is always understood as the default
one on any finite-dimensional normed space.

Example 1.1. TheNagumo or Real-Ginzburg-Landau (RGL) equa-
tion

ut = ∆u+ u(1− u)(u− p), (1.1)

where p ∈ R is a parameter, is a classical model in nonlinear PDE theory.
The Nagumo equation initially arose as a simplification of the Hodgkin-
Huxley model in neuroscience for electric impulse propagation in axons.
The RGL name is part of the important class of amplitude equations to be
discussed in Lecture 9. Sometimes (1.1) is also referred to as the Allen-
Cahn equation. We augment (1.1) by the initial condition u(x, 0) =
u0(x) for a given sufficiently smooth function u0 : Ω → R. Furthermore,
if Ω ( RN has a boundary then we consider suitable boundary conditions
such as Dirichlet boundary conditions

u(x, t) = g(x), for x ∈ ∂Ω,

where ∂Ω denotes the boundary of Ω, or Neumann boundary condi-
tions

(~n · ∇u)(x, t) = g(x), for x ∈ ∂Ω,

where ~n is the outer unit normal vector to ∂Ω, and g : RN → R is assumed
to be sufficiently smooth. Usually, the precise boundary conditions for the
Nagumo equation, as well as for all the other equations to be discussed,
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will not be our main focus in these notes and we shall use homogeneous
conditions g(x) ≡ 0 or even periodic boundary conditions

x ∈ TN := RN/ZN (= the N -dimensional torus)

to simplify the problem to study its main dynamical features. �

In particular, we shall always implicitly assume from now on that “suf-
ficiently nice” initial and boundary conditions are chosen for the problem
at hand. Once the boundary and/or initial condition are needed for a
particular calculation, we specify them explicitly.

Example 1.2. The stationary version of the Nagumo/RGL equation (1.1)
is obtained by setting ∂tu = 0 and given by

0 = ∆u+ u(1− u)(u− p), u = u(x). (1.2)

Nonlinear elliptic PDE, such as (1.2), arise frequently in applications, e.g. non-
linear elasticity, mathematical biology or theoretical physics. �

Although the cubic nonlinearity of the Nagumo equation and the Laplace
operator ∆ are natural choices to model reaction and diffusion respec-
tively, there are many other choices that are natural to study.

Example 1.3. One option is to consider a quadratic nonlinearity instead,
which yields the so-called Fisher- Kolmogorov-Petrovskii-Piskounov (FKPP)
equation

ut = ∆u+ u(1− u). (1.3)

Instead of changing the reaction-term, one frequently encounters other lin-
ear operators, not just ∆. A typical example is the Swift-Hohenberg
equation

∂tu = −(1 + ∆)2u+ f(u), (1.4)

where f(u) is usually a cubic nonlinearity in u, and depends usually on a
parameter p ∈ R as well. In applications, it is frequently natural to consider
additional components. A classical example is the FitzHugh-Nagumo
equation

∂tu = ∆u+ u(1− u)(u− p1)− v + p2,
∂tv = p3(u− p4v),

(1.5)

where pj ∈ R, j ∈ {1, 2, 3, 4}, are parameters and v = v(x, t). �

The field of nonlinear spatio-temporal evolution equations and their
dynamical analysis is vast (to say the least). Here we shall focus on some
examples but one should always keep in mind that even the list of impor-
tant examples is extremely long. Here we shall list a few examples, where
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dynamical systems techniques have turned out tremendously helpful (just
look at the differences as well as similarities in structure of the equations
for now):

Kuramoto-Sivashinsky ut = −uxxxx − uxx − uux, (1.6)

Burgers’ ut = −uux, (1.7)

Nonlinear Wave utt = ∆u+ f(u), (1.8)

Porous Medium ut = ∆(up), p ∈ (0,+∞) (1.9)

Korteweg-de Vries ut = −uux +−uxxx, (1.10)

Neural Field ut = −u+

∫

Ω
ω(x, y)f(u(y)) dy, (1.11)

Cahn-Hilliard ut = ∆(f(u)− p∆u), (1.12)

Allen-Cahn equation ut = ∆u− f(u), (1.13)

Nonlinear Schrödinger iψt = −∆ψ + pψ|ψ|2, ψ ∈ C, (1.14)

Gross-Pitaevskii iψt = −∆ψ + V (x)ψ + pψ|ψ|2, (1.15)

Keller-Segel

(
ut
vt

)

=

(
∇ · (∇u− u∇v) + f(u, v)

∆v + g(u, v)

)

,(1.16)

where the list could be continued with Sine-Gordon, Boltzmann, Gray-
Scott, Gierer-Meinhardt, Landau-Lifshitz-Gilbert, Euler, Navier-Stokes, and
many more! The main point is: A dynamical systems viewpoint can be use-
ful to understand all of these equations better, and we shall try to motivate
here with a few of these examples, why this is the case. But first, we have
to recall some important results for dynamics of ODEs

u′ := ut = f(u), u(0) = u0 ∈ Rd. (1.17)

Theorem 1.4. (Local existence and uniqueness; see [HSD03]) Con-
sider (1.17) with f ∈ C1 = C1(Rd,Rd). Then there exists t0 > 0 and
u : (−t0, t0) → Rd such that

u′(t) = f(u(t)), for t ∈ (−t0, t0) and u(0) = u0, (1.18)

i.e., u solves (1.17) for some open time interval containing t = 0.

Theorem 1.4 is completely local in time, and says nothing about what
the solutions to (1.17) actually do. Of course, it is critical to have such
knowledge for any application, for which the model was written down in
the first place. The next classical theorem does only slightly better.

Theorem 1.5. (Continuous dependence; see [HSD03]) Consider (1.17)
with f ∈ C1 and f with Lipschitz constant κ on an open bounded set U ⊂
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Rd. Suppose u, v both solve (1.17) and remain in U for all t ∈ [0, T ] then

‖u(t) − v(t)‖ ≤ ‖u(0) − v(0)‖eκT , (1.19)

i.e., solutions may diverge at most exponentially from each other; see also
Figure TODO.

Theorems 1.4-1.5 do not provide enough information on solutions. Non-
linear ODEs are already very difficult and the dynamics can be tremen-
dously complicated, even one-dimensional examples are interesting.

Example 1.6. Consider the one-dimensional ODE

u′ = f(u), u : R → R. (1.20)

If the equation is linear f(u) = pu for a parameter p ∈ R, then u(t) =
u(0)ept and we can easily draw the phase portraits as in Figure TODO. For
general nonlinear equations, closed-form solutions may not exist. Even if
they do, it is frequently more insightful to argue abstractly and/or geomet-
rically. For example, consider the ODE

u′ = u(p − u) = f(u). (1.21)

The steady states (or equilibrium points) u∗ are obtained by setting u′ = 0,
so that u∗1 = 0 and u∗2 = p as shown in Figure TODO. It is an extremely
important idea to first study the dynamics locally near steady states. Con-
sider

u = u∗2 + εw = p+ εw

for some small ε > 0. Then we have

u′ = (p + εw)′ = εw′

as well as

u(p− u) = (p+ εw)(p − p− εw) = −εpw +O(ε2) ≈ −εpw.
So we can hope to study the linear system w′ = −pw locally near w = 0 to
obtain stability results for u∗2 = p. Note that we can also derive this system
via direct linearization as

w′ = (Duf)(u
∗
2)w = f ′(p)w = (p− 2p)w = −pw. (1.22)

From (1.22), the local flow near p is given as in Figure TODO. The stability
of u∗2 = p changes as p passes through zero, i.e., u∗2 is locally asymptoti-
cally unstable for p < 0 and locally asymptotically stable for p > 0.
Similarly, we can obtain results for u∗1 = 0. Then another very helpful view
is to consider the (u, p)-plane and draw a bifurcation diagram as shown
in Figure TODO. �
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To define what we really mean by a bifurcation, we need a definition.

Definition 1.7. A dynamical system (A) is topologically equivalent (or
topologically conjugate) to another one (B) if there is a homeomorphism
mapping trajectories of (A) to (B) preserving the direction of time.

For example, an ODE (1.17) generates a flow

ϕ : Rd × (−t0, t0) → Rd, ϕ(u0, t) = u(t) (1.23)

and we can ask, when two flows are topologically conjugate. Suppose h :
Rd → Rd is a diffeomorphism, v := h(u) then

v′ = (Dh)u′ = (Dh)f(u) = (Dh)f(h−1(v)) (1.24)

and it is easy to show that v′ = g(v) := (Dh)f(h−1(v)) and u′ = f(u) are
topologically conjugate. Unfortunately, the converse is not true, and exis-
tence of a topological conjugacy does not imply the existence of h; further-
more, there are subtle differences between continuous-time and discrete-
time dynamical systems.

Example 1.8. Consider as another example the fold (or saddle-node)
bifurcation , which is exemplified by the one-dimensional system

u′ = p+ u2 = f(u). (1.25)

Steady states are u∗1 =
√−p, u∗2 = −√−p, which exist for p < 0, collide at

p = 0 and disappear for p > 0. Local stability is easily checked from the
linearization

w′ = (Duf)(u
∗)w = 2u∗w = ±2

√−pw (1.26)

so u∗1 is unstable and u∗2 is stable as shown in the bifurcation diagram in
Figure TODO. Clearly, the phase portraits for p < 0, p = 0 and p > 0 are
not topologically equivalent. �

It should be noted that (1.25) is a normal form for a fold bifurca-
tion, i.e., fold bifurcations in other coordinates can be qualitatively ’re-
duced’/’transformed’ to (1.25).

Definition 1.9. The appearance of a topologically nonequivalent phase
portrait under parameter variation is called a bifurcation.

Studying bifurcations for PDEs will be one of the main themes in the
lectures to follow. Another main theme is to take a geometric viewpoint of
phase space.
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Example 1.10. Consider the two-dimensional linear ODE

(
u′1
u′2

)

=

(
−1 0
0 1

)

︸ ︷︷ ︸

=:A

(
u1
u2

)

, (1.27)

which has solutions u1(t) = u1(0)e
−t, u2(t) = u2(0)e

t and a saddle steady
state at u∗ = (0, 0); see Figure TODO. The eigenspaces of A

Es(u∗) := {u = (u1, u2)
⊤ ∈ R2 : u2 = 0}, (1.28)

Eu(u∗) := {u = (u1, u2)
⊤ ∈ R2 : u1 = 0}, (1.29)

are invariant under the flow, i.e., trajectories cannot enter or leave. Fur-
thermore, the dynamics is directed away from u∗ in Es(u∗) and towards u∗

in Es(u∗); see Figure TODO. �

More generally, one should not only look at linear spaces but smooth
manifolds.

Definition 1.11. Let ϕ(u0, t) be a flow associated to an ODE (1.17) with
a steady state u∗. Define the stable and unstable manifolds by

W s(u∗) := {v ∈ Rd : ϕ(v, t) → u∗, as t→ +∞},
W u(u∗) := {v ∈ Rd : ϕ(v, t) → u∗, as t→ −∞}.

Definition 1.12. A steady state u∗ of the ODE (1.17) is called hyper-
bolic if (Duf)(u

∗) ∈ Rd×d has eigenvalues λi with Re(λi) 6= 0 for all
i ∈ {1, 2, . . . , d}.

The next classical theorem shows that hyperbolicity of steady states
implies that the local geometry perturbs very nicely, when the linearized
and the fully nonlinear system are compared.

Theorem 1.13. (Stable-Unstable Manifold Theorem; see [KH95])
Suppose the ODE (1.17) has a hyperbolic steady state u∗ and (Duf)(u

∗)
has k real-part negative and d − k real-part positive eigenvalues with cor-
responding eigenspaces Es(u∗) and Eu(u∗) for the linearized system. Then
there exists a neighbourhood U of u∗ with local stable and unstable manifolds
W s

loc(u
∗) and W u

loc(u
∗)

W s
loc(u

∗) = {v ∈ U : ϕ(v, t) → u∗ as t→ ∞ and ϕ(v, t) ∈ U ∀t ≥ 0},
W u

loc(u
∗) = {v ∈ U : ϕ(v, t) → u∗ as t→ −∞ and ϕ(v, t) ∈ U ∀t ≤ 0}.

Furthermore, W s
loc(u

∗) and W u
loc(u

∗) are tangent to Es(u∗) and Eu(u∗) at
u∗ and are as smooth as f .
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Note that Theorem 1.13 does relate algebra, geometry, analysis and
dynamics near hyperbolic steady states; see also Figure TODO.

Exercise 1.14. Use separation of variables to show that the ODE u′ = u2

for u ∈ R has solutions becoming unbounded in finite time, i.e. t0 6= ∞ in
Theorem 1.4. ♦

Exercise 1.15. Consider u′ = Au for some matrix A ∈ R2×2 and classify
the stability of u∗ = 0 based upon the trace and determinant of A. ♦

Exercise 1.16. Derive the bifurcation diagram for the pitchfork bifur-
cation normal form u′ = u(p− u2) with u ∈ R and p ∈ R. ♦

Background and Further Reading: There are many books excel-
lent books on dynamical systems and ODEs. Very readable introductions
suited for self-study are [Str00, HSD03]. Bifurcation theory for ODEs is
well-documented in the monograph [Kuz04]. Deriving all the results and
techniques presented in this section is definitely a course by itself but we
shall simply assume the results here as motivating starting points.
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2 Implicit Functions and Lyapunov-Schmidt

A first step to try to use dynamical systems ideas to PDEs is to focus
on local bifurcations and this requires some technical background from
functional analysis.

Let X,Y,Z be real Banach spaces. We want to study the problem

F (u, v) = 0, F : X × Y → Z, (u, v) ∈ X × Y. (2.1)

It helps to think of the simple case Y = R and v as a parameter, then one
may write, e.g., the stationary Nagumo equation (1.2) in the form (2.1)

F (u, p) = ∆u+ u(1− u)(u− p) = 0 (2.2)

with p = v ∈ R and a suitable Banach space X.

Definition 2.1. F : X × Y → Z is Fréchet differentiable in X at
(u0, v0), if there exists a bounded linear operator DuF (u0, v0) ∈ L(X,Z)
such that

lim
h→0

‖F (u0 + h, v0)− F (u0, v0)−DuF (u0, v0)h‖Z
‖h‖X

= 0.

Sometimes we shall write (DuF )(u0, v0) to indicate with correct brack-
ets, where the derivative is evaluated. Mostly, the shorter notation DuF (u0, v0),
or even just DuF , will be used.

Theorem 2.2. (Implicit Function Theorem, [Dei10, Kie04]) Suppose
(u0, v0) satisfies (2.1), (DuF )(u0, v0) is bijective, F ∈ C(X × Y,Z) and
DuF ∈ C(X × Y,L(X,Z)). Then there exists a neighbourhood U × V of
(u0, v0) and a continuous map f : V → U such that f(v0) = u0 and

F (f(v), v) = 0 for all v ∈ V. (2.3)

Moreover, all solutions in U × V are of the form (2.3).

Theorem 2.2 is a natural generalization of the implicit function theorem
on Rd [Rud76]. All the assumptions on F and its derivatives only have to
hold locally and f is smoother if F is.

Example 2.3. Consider the transcritical bifurcation (1.21) again

F (u, p) = u(p − u), u ∈ R = X, p ∈ R = Y, Z = R. (2.4)

Consider (u, p) = (0, p), which always solves (2.4) and calculate

(DuF )(0, p) = p− 2 · 0 = p and (DpF )(0, p) = 0.

10



So the implicit function theorem applies using DuF as long as p 6= 0 and
fails at the bifurcation value p = 0. In particular, for p 6= 0 the last part
of the implicit function theorem guarantees local uniqueness of a branch of
solutions while two solution branches cross at p = 0; see Figure TODO.

Definition 2.4. Consider F : U ⊂ X → Z with F Fréchet differentiable
and let u0 ∈ U ⊂ X. F is a nonlinear Fredholm operator if the following
conditions hold:

• dim(N [(DuF )(u0)]) <∞, where N [·] denotes the nullspace,

• codim(R[(DuF )(u0)]) <∞, where R[·] denotes the range,

and where codim(S) := dim(Z −S). Then define the Fredholm index as

Fredholm index := dim(N [(DuF )(u0)])− codim(R[(DuF )(u0)]).

It can be shown that the Fredholm index is independent of u0 ∈ U ;
essentially Fredholm operators have ’relatively small nullspace’ and miss a
’relatively small part’ of the range; see Figure TODO.

The next goal is to reduce the general infinite-dimensional problem

F (u, v) = 0, F : U × V ⊂ X × Y → Z (2.5)

to a more tractable finite-dimensional problem. We usually assume V ⊂ R

(or Rd for some d) and it remains to reduce the u-component. This will be
achieved using the Lyapunov-Schmidt method . Assume that

F (u0, v0) = 0, F,DuF ∈ C, F (·, v0) : X → Z is a Fredholm operator.

Then it is relatively easy to show that

X = N [(Duf)(u0, v0)]⊕X0 =: N ⊕X0,

Z = R[(Duf)(u0, v0)]⊕ Z0 =: R⊕ Z0,

where N and Z0 are finite-dimensional. Then define projections

P : X → N , along X0,
Q : Z → Z0, along R.

Lemma 2.5. P,Q are continuous.

Proof. Apply the closed graph theorem (recall: T : X → Z is continuous
iff {(x, z) : Tx = z} is closed).
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Theorem 2.6. (Lyapunov-Schmidt Reduction) Under the assumptions
in this section, there exists a neighbourhood U × V of (u0, v0) such that
F (u, v) = 0 is equivalent in U × V to the finite-dimensional problem

Φ(ũ, v) = 0, (ũ, v) ∈ Ũ1 × V1 ⊂ N × V (2.6)

and Φ is continuous with Φ(ũ1, v1) = 0 for (ũ1, v1) ∈ Ũ1 × V1.

Remark : Note that ũ ∈ N , and v1 ∈ Rd by assumption, really means that (2.6)
is finite-dimensional. A more precise expression for the bifurcation function Φ
will be provided below.

Proof. (of Theorem 2.6) The equation F (u, v) = 0 is equivalent to the
system

QF (Pu+ (Id− P )u, v) = 0,
(Id−Q)F (Pu+ (Id− P )u, v) = 0.

(2.7)

Define

ũ := Pu, w := (Id−P )u, G(ũ, w, v) := (Id−Q)F (ũ+w, v). (2.8)

We work locally near (u0, v0) so it is natural to also define

ũ0 := Pu0, w0 := (Id− P )u0 (2.9)

and observe that G(ũ0, w0, v0) = 0 by (2.7). The key observation of the
proof is that

(DwG)(ũ0, w0, v0) = (Id−Q)(DuF )(u0, v0) : X0 → R is bijective.

In particular, DwG acts ’nicely’ on the infinite-dimensional parts of X and
Z; here the finiteness assumptions of the Fredholm property are absolutely
crucial. Now we may just apply the Implicit Function Theorem 2.2 and
obtain

ψ : Ũ1 × V1 → X0, ψ(ũ, v) = w, ψ(ũ0, v0) = w0. (2.10)

Inserting ψ(ũ, v) = w into (2.7) yields

0 = QF (ũ+ w, v) = QF (ũ+ ψ(ũ, v), v), (2.11)

0 = (Id−Q)F (ũ+ w, v) = (Id−Q)F (ũ+ ψ(ũ, v), v), (2.12)

where (2.12) holds by construction and (2.11) is a finite-dimensional prob-
lem

Φ(ũ, v) := QF (ũ+ ψ(ũ, v), v) = 0. (2.13)

Continuity of Φ also follows from the Implicit Function Theorem.
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Corollary 2.7. Consider the same setup as in Theorem 2.6 and F ∈ C1.
Then ψ ∈ C1, Φ ∈ C1 and

Dũψ(ũ0, v0) = 0 ∈ L(N ,X0), (2.14)

DũΦ(ũ0, v0) = 0 ∈ L(N , Z0). (2.15)

Proof. Regularity is clear and just follows from the Implicit Function The-
orem. The idea is to just differentiate (2.12) with respect to ũ so

(Id−Q)(DuF )(ũ+ ψ(ũ, v), v)[Dũψ + IdN ] = 0.

Evaluating at (ũ0, v0), and using (DuF )IdN = 0, yields

(Id−Q)(DuF )(ũ0 + w0, v0)[Dũψ(ũ0, v0)] = 0.

Since Dũψ(ũ0, v0) maps into X0, which is complementary to N , the last ex-
pression will only vanish if Dũψ(ũ0, v0) = 0 so (2.14) holds. Differentiating
Φ is similar and yields (2.15).

Exercise 2.8. Carry out the last step in the proof of Corollary 2.7. ♦

Exercise 2.9. Let F (u, p) := −∆u+ f(u, p), where f(u, p) = u(p− u) for
all p ∈ R. Consider ∆ as an operator with Dirichlet boundary conditions
for x ∈ [0, π], i.e.,

−∆u = −∂
2u

∂x2
, u(0) = 0 = u(π). (2.16)

Prove that the Fréchet derivative L(u0, p0) := (DuF )(u0, p0) is L(u0, p0) =
−∆+ p0 − 2u0. ♦

Exercise 2.10. Calculate the eigenvalues λj and eigenfunctions ej =
ej(x) of L(0, p0), i.e., when do we have L(0, p0)ej = λjej . ♦

Background and Further Reading: The material in this section is
based upon [Kie04], which is a very detailed, but not necessarily easy to
digest, account of bifurcation theory for wide classes PDEs. Other classic
accounts of this topic are [CH82, IJ97].
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3 Crandall-Rabinowitz and Local Bifurcations

The next step is to prove a result, which we can actually apply to find local
bifurcations of certain classes of PDEs. Consider

F (u, p) = 0, F : X × R → Z, F (0, p) ≡ 0, (3.1)

where the last condition means that we always have a trivial (or homo-
geneous) solution branch. Furthermore, we assume throughout this
section that

(A1) dim(N [DuF (0, p0)]) = 1 = codim(R[DuF (0, p0)]) so F (·, p0) is a non-
linear Fredholm operator of index zero at p0,

(A2) F ∈ C3 in an open neighbourhood of the trivial branch.

We view D2
up as an element of L(X,Z). We may shift the parameter, if

necessary, and assume without loss of generality that the interesting point,
where the Implicit Function Theorem fails, is at p0 = 0. The next theorem
is a fundamental result in the field:

Theorem 3.1. (Crandall-Rabinowitz Theorem; [CR71]) Consider (3.1)
and assume that (A1)-(A2) hold as well as

N [DuF (0, 0)] = span[e0], (D2
upF )(0, 0)e0 6∈ R[DuF (0, 0)]. (3.2)

for e0 ∈ X and ‖e0‖X = 1. Then there is a nontrivial branch of solutions
described by a C1-curve through (u, p) = (0, 0)

{(u(s), p(s)) : s ∈ (−s0, s0), (u(0), p(0)) = (0, 0)}, (3.3)

which satisfies F (u(s), p(s)) = 0 locally, and all solutions in a neighbour-
hood of (0, 0) are either the trivial solution or on the nontrivial curve (3.3).

Remark : An illustration of the bifurcation point at (u, p) = (0, 0) is shown in
Figure TODO, together with a few different situations we expect to appear from
the finite-dimensional cases discussed in Section 1.

Proof. (of Theorem 3.1) The idea is, as we have done before in similar situ-
ations, to apply the Implicit Function Theorem to get the non-trivial curve.
Using Lyapunov-Schmidt Reduction, the bifurcation function Φ satisfies

Φ(ũ, p) = 0, Φ : Ũ1 × V1 → Z0, dim(Z0) = 1.

Using Theorem 2.6 and Corollary 2.7, as well as the associated notations,
we also have

ψ(0, p) = 0, Dpψ(0, p) = 0, Φ(0, p) = 0, (3.4)
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in a suitable neighbourhood of p = 0. Using the last observation about Φ
gives us

Φ(ũ, p) =

∫ 1

0

d

dt
Φ(tũ, p) dt ⇒ Φ(ũ, p) =

∫ 1

0
DũΦ(tũ, p)ũ dt. (3.5)

Next, let ũ = se0, s ∈ (−s0, s0) and observe that we get nontrivial solutions
to Φ(ũ, p) = 0 if we can solve

Φ̃(s, p) :=

∫ 1

0
DũΦ(tse0, p)e0 dt = 0 (3.6)

for s 6= 0. To solve the last equation, we want to use the Implicit Function
Theorem and this requires computing a derivative, so we carry out the
following main computation of the proof. We need Dp((DũΦ)(ũ, p)e0) =

(2.13)
= Dp(Q(DuF )(ũ+ ψ(ũ, p), p)(e0 + (Dũψ)(ũ, p)e0))

= Q(D2
uuF )(ũ+ ψ(ũ, p), p)[e0 + (Dũψ)(ũ, p)e0,Dpψ(ũ, p)]

︸ ︷︷ ︸

:=(T1)

+Q(D2
upF )(ũ+ ψ(ũ, p), p)(e0 + (Dũψ)(ũ, p)e0)

︸ ︷︷ ︸

:=(T2)

+Q(DuF )(ũ+ ψ(ũ, p), p)((D2
pũψ)(ũ, p)e0))

︸ ︷︷ ︸

:=(T3)

and evaluate the last expression at (ũ, p) = (0, 0). Then (T1) = 0 since
(Dpψ)(0, 0) = 0 by (3.4). Furthermore, (T3) = 0 since Q projects along R
to the complement of the range of the linearized problem. So we are left
with (T2). Now we can compute

(DpΦ̃)(0, 0) =

∫ 1

0
(DpDũΦ)(0, 0)e0 dt

= Q(D2
ũpF )(0, 0)e0 6= 0 ∈ Z0, (3.7)

where the last conclusion about the non-equality with zero follows from the
assumption (3.2). Finally, applying the Implicit Function Theorem 2.2 and
get a curve ϕ : (−s0, s0) → V1, such that ϕ(0) = 0 and Φ̃(s, ϕ(s)) = 0 near
s = 0. This implies

Φ(se0, ϕ(s)) = sΦ̃(s, ϕ(s)) = 0

and the curve given by

(u(s), p(s)) = (se0 + ψ(se0, ϕ(s)), ϕ(s)), s ∈ (−s0, s0),
has all the required properties we stated in the theorem.
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Frequently, the situation in the Crandall-Rabinowitz Theorem is also
described as bifurcation from a simple eigenvalue, which makes sense
as dimN = 1 by assumption so the interesting eigenspace indeed has a
simple eigenvalue.

Corollary 3.2. The tangent vector to the nontrivial solution curve at
(u, p) = (0, 0) is given by (e0, ṗ(0)).

The proof of the corollary will be left as an exercise; see also Figure
TODO. The next step is to determine the shape of the nontrivial so-
lution curve more precisely, which requires us to evaluate the derivative
ṗ(0) = d

dsp(s)
∣
∣
s=0

. It is helpful to get another representation of the projec-
tion Q : Z → Z0 to do this calculation.

Lemma 3.3. Suppose Z0 = span[g0], g0 ∈ Z, ‖g0‖Z = 1, then

Qz = 〈z, g′0〉g0, for some g′0 ∈ Z ′ and for all z ∈ Z, (3.8)

where 〈·, ·〉 denotes the duality pairing between Z and the dual space Z ′;
furthermore, we have 〈g0, g′0·〉 = 1.

Proof. We apply the Hahn-Banach Theorem [Rud91] (or more precisely
an immediate consequence of the Hahn-Banach Theorem) to obtain a vector
g′0 ∈ Z ′ such that

〈g0, g′0〉 = 1, 〈z, g′0〉 = 0 ∀z ∈ R(DuF (0, 0)).

The result now follows immediately.

The following result is an elegant formula that can, however, be difficult
to evalute in some situations.

Theorem 3.4. The derivative ṗ(0) of the nontrivial solution curve from
Theorem 3.1 is given by

ṗ(0) = −1

2

〈(D2
uuF )(0, 0)[e0, e0], g

′
0〉

〈(D2
upF )(0, 0)e0, g

′
0〉

. (3.9)

Proof. Recall that Φ̃(s, p(s)) = 0, locally near s = 0, and differentiate

d

ds
Φ̃(s, p(s))

∣
∣
∣
∣
s=0

= (DsΦ̃)(0, 0) + (DpΦ̃)(0, 0)ṗ(0) = 0. (3.10)

We proved in (3.7) that (DpΦ̃)(0, 0) 6= 0 and computed an expression for it
in terms of F . So it remains to calculate

(DsΦ̃)(0, 0) =

∫ 1

0
(D2

ũũΦ)(0, 0)[e0, te0] dt =
1

2
Q(D2

uuF )(0, 0)[e0 , e0] (3.11)
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where we have used that (DũΦ) = Q(DuF )IdN and bilinearity of the second
derivative operator. Using (3.10), (3.11) and Lemma 3.3 yields the result.

If ṗ(0) 6= 0 then we expect the structure of a transcritical bifurcation
similar to Example 1.6. So let us make a sanity check.

Example 3.5. Consider the ODE (1.21) again

u′ = u(p − u), F (u, p) := u(p− u). (3.12)

So we have X = R, Y = R and Z = R. The Fréchet derivatives just
become usual partial derivatives and the dual pairing just becomes the
inner product (i.e. just multiplication in R here). Furthermore, the point
of interest clearly is (u, p) = (0, 0), where the implicit function theorem
fails as

(DuF )(0, 0) = (∂uF )(0, 0) = 0 = (∂pF )(0, 0) = (DpF )(0, 0).

So span[e0] = N [DuF (0, 0)] for e0 = 1 and

(D2
upF )(0, 0)e0 = (∂2upF )(0, 0)e0 = 1 · 1 = 1 6∈ R[DuF (0, 0)] = {0}.

So the Crandall-Rabinowitz Theorem 3.1 applies. In addition, we can easily
use the formula (3.9)

ṗ(0) = −1

2

〈(D2
uuF )(0, 0)[e0 , e0], g

′
0〉

〈(D2
upF )(0, 0)e0, g

′
0〉

= −1

2

(−2) · 1
1 · 1 = 1.

Hence, we recover the result in Figure TODO.

Example 3.5 demonstrates that we may expect formula (3.9) to be quite
widely applicable, and easy to calculate, if X is a Hilbert space. Sometimes
the explicit calculations can even be done in quite general Banach spaces
but these examples are beyond, what we can present here.

Theorem 3.6. (see [Kie04]) The second derivative p̈(0) of the nontrivial
solution curve from Theorem (3.1) is given by

p̈(0) = −1

3

〈(D3
ũũũΦ)(0, 0)[e0, e0, e0], g

′
0〉

〈(D2
upF )(0, 0)e0, g

′
0〉

. (3.13)

In the Crandall-Rabinowitz Theorem case, when ṗ(0) = 0 and p̈(0) 6= 0
we have a pitchfork bifurcation. The pitchfork is subcritical if p̈(0) < 0
and supercritical if p̈(0) > 0.
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One last step, we need to verify is that many of the operators we are
dealing with are indeed Fredholm. For example, consider again the problem

∂tu = ∆u+ f(u, p) = F (u, p), (3.14)

where we could, e.g., take f(u, p) = u(1 − u)(u − p) or f(u, p) = u(p − u).
Then the ansatz u = u∗ + ǫw for a steady state u∗, say for p = 0, easily
leads to the linearized problem

∂tw = ∆w + (Duf)(u
∗, 0)w = (DuF )(u

∗, 0)w. (3.15)

So a typical class of operators we should deal with are of the form “Lapla-
cian + lower order terms”.

Definition 3.7. Consider the differential operator

Lu := −
N∑

i,j=1

aij(x)∂xi
∂xj

u+
N∑

j=1

bj(x)∂xj
u+ c(x)u.

for x ∈ Ω ⊂ RN with sufficiently regular (say: smooth) coefficient functions.
Then L is called uniformly elliptic if there exists a constant K > 0 such
that

N∑

i,j=1

aij(x)ξiξj ≥ K‖ξ‖2 ∀x ∈ Ω, ξ ∈ RN .

The following is quite a remarkable, and extremely useful, fact.

Theorem 3.8. Let the D(L) := H2(Ω) ∩ H1
0 be the domain of L and

consider it as an operator L : D(L) → H0(Ω), then L is a Fredholm operator
of index zero.

Remark : Of course, by elliptic regularity [Eva02], we already know that the eigen-
functions we are going to get are not only in some Sobolev space but are actually
classical smooth solutions.

Proof. (Sketch; for more details see [Kie04]) By standard elliptic PDE the-
ory, one may see that the operator L − c Id : D(L) → H0(Ω) is bounded
and bijective for a suitable constant c ≥ 0 (indeed, just look at solving
Lu − cu = g). Then one may see that the operator (L − c Id)−1 =: Kc :
H0(Ω) → H0(Ω) is compact (images of convergent sequences have a con-
vergent subsequence). For g ∈ H0(Ω) we can compute

Lu = g ⇔ (Id + cKc)u = Kcg. (3.16)

One alternative characterization of Fredholm operators is that they are pre-
cisely those, which are invertible up to a compact operator (which accounts
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for the kernel and range properties we used above to define Fredholm op-
erators). Hence, one sees that Id + cKc is Fredholm. Furthermore, (3.16)
then implies

dim(N [L]) = dim(N [Id + cKc]) = n <∞

as well as
g ∈ R[L] ⇔ Kcg ∈ R[Id + cKc].

One now just has to show that the range also has dimension n to get that
the index is zero. From the decomposition

g = (Id + cKc)g − cKcg

one finds

H0(Ω) = R[Id + cKc] +R[Kc] ⇒ H0(Ω) = R[Id + cKc] +Kc(Z0)

for some n-dimensional space Z0 ⊂ H0(Ω) with R[L] ∩ Z0 = {0}. Then
it is relatively easy to conclude with a few further steps (check it!) that
codim(R[L]) = n.

Exercise 3.9. Prove Corollary 3.2. ♦

Exercise 3.10. Write down a one-dimensional ODE u′ = f(u, p1, p2),
which has a pitchfork bifurcation upon varying p1 through 0 and the pitch-
fork changes from sub- to super-critical if p2 is varied through 0. ♦

Exercise 3.11. Let x ∈ (0, π) =: Ω and consider the problem

∂tu = ∂2xxu+ f(u, p), (3.17)

where ∆ is understood as an operator with the domain L2(0, π) and ho-
mogeneous Dirichlet boundary conditions. Now try to apply the results
presented so far to the two cases

f(u, p) = u(p− u) and f(u, p) = u(p− u2). (3.18)

As a more advanced question: What do you expect to happen if we perturb
f by f(u, p) + δf̃(u) with f̃(0) 6= 0? This last case is sometimes called
imperfection. ♦

Background and Further Reading: The material in this section is
based upon [Kie04] and the last exercise/question is motivated by [IJ97].
It can also be useful to explore to study associated numerical algorithms
as calculating local bifurcation points can beome tedious and/or impossi-
ble quite quickly; for 1D-boundary-value problems see [DCD+07] and for
elliptic PDEs in R2 see [UWR14, Ban07].
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4 Stability and Spectral Theory

The last question we have to address is stability for the evolution problem

∂tu = F (u, p), u : [0,+∞) → X, u = u(t) ∈ X, p ∈ R. (4.1)

Recall that the spectrum σ(A) of a linear operator A consists of all ele-
ments λ ∈ C such that (A−λId) is not invertible or the inverse (A−λId)−1

is not a bounded operator; careful: this may crucially depend on the choice
of spaces for A, the associated domain for A and implicitly we understand
that if A is not a closed operator, we always look at its closure.

Definition 4.1. A solution branch (u∗(p), p) for F (u, p) = 0 is called
(linearly) stable at p∗ if σ(DuF (u

∗, p∗)) is properly contained in the left
half of the complex plane.

We continue with the notation from Section 3 and assume in addition
that the Banach space X is continuously embedded into the Banach space
Z. Consider the case of a simple eigenvalue λ(s) with λ(0) = 0, which oc-
curs in the Crandall-Rabinowitz Theorem 3.1. In particular, simple eigen-
value means that N [DuF (0, 0)] = span[e0] implies e0 6∈ R[DuF (0, 0)]. This
implies we have a decomposition

Z = N [DuF (0, 0)] ⊕R[DuF (0, 0)]

and an associated induced decomposition

X = N [DuF (0, 0)] ⊕ (X ∩R[DuF (0, 0)]).

Note that this identifies the projection Q used in the Lyapunov-Schmidt
method to prove Crandall-Rabinowitz as Q : Z → N [DuF (0, 0)].

We can determine local stability of the trivial branch from this eigen-
value if we assume that σ(DuF (0, p(s))) − {λ(s)} is properly contained in
the left-half complex plane for s ≈ 0; see Figure TODO. Parametrize λ by p
such that λ = λ(p), λ(0) = 0, and consider the eigenvalue perturbation

(DuF )(0, p)(e0 + w(p)) = λ(p)(e0 + w(p)), w(0) = 0. (4.2)

Differentiating (4.2) with respect to p and evaluating at p = 0 yields

(D2
upF )(0, 0)e0 + (DuF )(0, 0)

dw

dp
(0) =

dλ

dp
(0) e0. (4.3)

Recall the dual pairing with g′0 ∈ Z ′ satisfies the property that 〈z, g′0〉 = 0
for all z ∈ R = R[(DuF )(0, 0)]. Due to the identification of Z0 with
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N [DuF (0, 0)] as discussed above, we can just apply the pairing 〈·, g′0〉 to
(4.3) obtain

dλ

dp
(0) = 〈(D2

upF )(0, 0)e0 , g
′
0〉.

In particular, the second condition in (3.2) in the Crandall-Rabinowitz
Theorem has a reformulation

(D2
upF )(0, 0)e0 6∈ R[DuF (0, 0)] ⇔ dλ

dp
(0) 6= 0.

In particular, we may interpret the non-vanishing condition of the derivative
of λ(p) at p = 0 as an eigenvalue crossing with nonzero speed upon
variation of p or as a transversality condition.

So far, we have implicitly assumed that we know the spectrum of the
linear operator

(DuF )(0, 0) ∈ L(X,Z). (4.4)

However, for practical problems this may be far from trivial so we consider
a few standard cases, where explicit calculations turn out to be possible.

Example 4.2. Let A ∈ Rd×d be a symmetric matrix and consider the
linear ODE

u′ = Au, u = u(t) ∈ Rd, ⇒ u(t) = etAu(0) (4.5)

using the matrix exponential. Without loss of generality (upon applying a
coordinate change) we may assume that A is in diagonal form with eigenval-
ues λj, j ∈ {1, 2, . . . , d}. If λj < 0 for all j then u = 0 := (0, 0, . . . , 0) ∈ Rd

is a (globally asymptotically) stable steady state. Ordering the eigenvalues

· · · ≤ λ2 ≤ λ1 < 0

we see that u(t) ∼ Keλ1te1 as t → +∞, where Ae1 = λ1e1. In particular,
the behaviour is dominated by the weakest attracting direction in the long-
time limit; see Figure TODO. The rate of collapse onto this direction is
given by the spectral gap λ2 − λ1. �

It is very helpful to just calculate a few examples.

Example 4.3. Consider the eigenvalue problem for the Laplacian on an
interval

d2

dx2
u = λu (4.6)
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for x ∈ [0, ρ]. Denote the eigenfunctions by ej and the associated eigenval-
ues by λj. We find

u(0) = 0 = u(ρ) ⇒ λj = − (jπ/ρ)2 , ej(x) = sin(jπx/ρ), j ≥ 1,
du
dx(0) = 0 = du

dx(ρ) ⇒ λj = − (jπ/ρ)2 , ej(x) = cos(jπx/ρ), j ≥ 0.

Hence, the eigenvalues and eigenfunctions clearly depend crucially on the
chosen boundary conditions. �

Example 4.4. Consider the Laplacian on a rectangle Ω = [0, ρ1] × [0, ρ2]
and the eigenvalue problem

∆u = λu, u(x) = 0 for x ∈ ∂Ω. (4.7)

Then the eigenvalues and eigenfunctions are easily checked to be

ejk(x) = sin(jπx1/ρ1) sin(jπx2/ρ2), λjk = − (jπ/ρ1)
2 − (jπ/ρ2)

2 ,

for j, k ≥ 1. �

However, beyond simple rectangular (or more generally hypercube) do-
mains, giving explicit formulas for the eigenfunctions and eigenvalues of the
Laplacian is usually not possible. Nevertheless, there are very remarkable
abstract results.

Theorem 4.5. (Spectrum of Elliptic Operators; see [Eva02]) Consider
the eigenvalue problem

−Lu = λu, in Ω u = 0, on ∂Ω, (4.8)

where L is uniformly elliptic, then L has an at most countable set of eigen-
values λj with λj → −∞.

Remark : One should be careful with sign-conventions as one also frequently finds
in the literature results for Lu = λu.

If one consider L on the domain D(L) = H1
0 (Ω) ∩ H2(Ω) with L :

D(L) → H0(Ω), it is not difficult to see that there are also associated bases
of orthonormal eigenfunctions for the relevant Hilbert spaces associated to
the eigenvalues.

Example 4.6. Let us return for x ∈ Ω to the problem

∂tu = ∆u+ f(u, p) = F (u, p), u = 0 on ∂Ω (4.9)

from equation (3.14), where we assume that the trivial branch (u, p) = (0, p)
exists. The eigenvalue problem of the linearized PDE (see also (3.15)) for
the trivial branch is

−Lu = (∆ + (Duf)(0, p))u = λu or ∆u = (λ− (Duf)(0, p))u (4.10)
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where L is an elliptic operator. So we only have to deal with discrete
eigenvalues in the spectrum by Theorem 4.5. On some domains, we can
even calculate stability explicitly! For example, if Ω = [0, ρ] then we see
from (4.10) that the eigenvalues of the Laplacian ∆u = λ̃u are just shifted

λ̃j = λj − (Duf)(0, p)

⇒ λj = λ̃j + (Duf)(0, p)

⇒ λj = − (jπ/ρ)2 + (Duf)(0, p)

for j ≥ 1. In particular, we see that the critical eigenvalue, which is going
to pass through the imaginary axis first is given by j = 1. The condition
for instability is λ1 > 0 or

(π/ρ)2 < (Duf)(0, p)

so increasing the domain size ρ will eventually destabilize the steady state,
which is then referred to as a long-wave instability. Of course, we may
also consider the case when ρ is fixed then varying the parameter p could
eventually destabilize the system. �

The next example shows that we do not only have to focus on elliptic
PDE and can treat other classes with very similar bifurcation-theoretic
methods.

Example 4.7. Consider the thin-film equation (with constant surface
tension) on a periodic domain

∂tu = −∂4xxxxu− ∂x(f(u)∂xu) =: F (u), x ∈ [0, 2π]/(0 ∼ 2π) = T1,
(4.11)

where u = u(x, t) models the height of a thin fluid film on a substrate and
f takes into account the substrate fluid interactions. Clearly any constant
u ≡ u∗ ∈ R+ is a steady state for (4.11). The linearization at u∗ is

∂tw = (DuF )(u
∗)w = [[D(−∂4xxxx − f(·)∂2xx − f ′(·)(∂x)2)](u∗)]w,

= −∂4xxxxw − f(u∗)∂2xxw + f ′(u∗)w · ∂2xxu∗ + · · ·
︸ ︷︷ ︸

=0

,

where we have used that evaluating operators such as ∂x and ∂2xx on con-
stants u∗ yields zero (it is a good exercise to check the last calculation by
setting u := u∗ + ǫw). In the context, we work here, it makes sense to only
study perturbations w, which have mean zero. Indeed, from the thin film
equation we have

d

dt

∫ 2π

0
u(x, t) dx = −

∫ 2π

0
∂4xxxxu+ ∂x(f(u)∂xu) dx

=
(
−∂3xxxu− f(u)∂xu

)∣
∣
2π

0
= 0
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by periodicity, so we have mass conservation, so meaningful perturba-
tions should also have mass conservation. Substituting a Fourier mode

wk = exp(λt) exp(ikx), k 6= 0,

into the linearized problem yields λ = −k2(k2−f(u∗)) so if f depends upon
parameters, e.g. due to a parametrically changing substrate-fluid interac-
tion, then we can determine the stability of steady states. Note that the
sign of f is crucial: (a) f > 0 then the second-order term acts destabilizing,
which is no surprise as it represents a ’backward-heat-equation’-term and
(b) f < 0 then λ < 0 so the ’forward-heat-equation’-term stabilizes. �

Exercise 4.8. Show that the general solution of the second-order ODE

a
d2u

dx2
+ b

du

dx
+ cu = 0, u = u(x), x ∈ Ω ⊂ R

is given by u(x) = eαx(K1 cos(βx) +K2 sin(βx)), where r± = α ± iβ with
α, β ∈ R are solutions to ar2 + br + c = 0. Use this result to derive the
solutions of (4.6) for homogeneous Dirichlet, homogeneous Neumann as
well as homogeneous Robin,

−du

dx
(0) + u(0) = 0 = −du

dx
(L) + u(L),

boundary conditions. ♦

Exercise 4.9. Consider (4.9) on Ω = (0, π) and look at the two cases

f(u, p) = u(1− u)(u− p), f(u, p) = u(p − u).

Investigate the stability of steady states for both cases under parameter
variation of p. ♦

Exercise 4.10. Recall from your PDE course, how to solve the heat equa-
tion ∂tu = ∂2xxu and the wave equation ∂2ttu = ∂2xxu using separation
of variables, which is the ansatz u(x, t) = u1(x)u2(t). In particular, re-
call how the eigenvalues of the Laplacian discussed above enter in a formal
series solution obtained by separation of variables. ♦

Background and Further Reading: The material for supplementing
Crandall-Rabinowitz is from [Kie04], while the spectral theory and thin-film
example follows [Lau12]. A good source for classical spectral theory results
in applied mathematics is [DL00].
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5 Existence of Travelling Waves

Suppose we consider the one-dimensional reaction-diffusion PDE

∂tu = ∂2xxu+ f(u), u = u(x, t) ∈ R, x ∈ R, (5.1)

which we have studied in Sections 3 and 4 as an example several times.
We know already a bit about how to deal with the steady state solutions,
their stability, and some of their bifurcations. Another natural question
is to look for important non-stationary solutions. A key ingredient is the
travelling wave ansatz

u(x, t) = u(x− st) =: u(ξ), i.e. ξ := x− st, (5.2)

where s ∈ R is the wave speed to be determined. Essentially (5.2) pos-
tulates that we only want to look for solutions u, which depend upon a
moving frame variable ξ = x − st. A wave profile moves ’to the left’ if
s < 0, it moves ’to the right’ if s > 0 and it is a standing wave if s = 0.
Plugging (5.2) into (5.1) yields

−sdu
dξ

=
d2u

dξ2
+ f(u), (5.3)

where we just used the chain rule. It is clear that steady states u(x, t) ≡
u∗ ∈ R of (5.1) are also steady states (or equilibria) for (5.3). It is those
solutions where u(ξ) is not constant, which are interested in here; see Figure
TODO. One may naively hope that (5.3) has explicit solution formulas. In
generic situations, this is not the case. However, there are examples other
than (5.1), where one may be lucky to find nice closed-form solutions.

Example 5.1. Probably the most famous example, where explicit formulas
for waves exist is the Korteweg-deVries (KdV) equation

∂tu = −u∂xu− ∂3xxxu. (5.4)

Substituting (5.2) into (5.4) and re-arranging terms yields

−su′ + uu′ + u′′′ = 0,
d

dξ
=′ (5.5)

Since uu′ = 1
2 (u

2)′, the last equation can be integrated once

−su+ 1

2
u2 + u′′ = c1, (5.6)
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where c1 is a constant of integration. If we are only interested in waves
which are doubly asymptotic as ξ → ±∞ to zero (see also Figure TODO),
with vanishing derivatives, we have the conditions

lim
ξ→±∞

u(ξ) = 0, lim
ξ→±∞

u′(ξ) = 0, lim
ξ→±∞

u′′(ξ) = 0, · · · (5.7)

so the integration constant must be c1 = 0 in this case. Multiplying (5.6)
by u′ gives

−suu′ + 1

2
u2u′ + u′′u′ = −s1

2
(u2)′ +

1

6
(u3)′ +

1

2
((u′)2)′ = 0, (5.8)

which can be integrated. The integration constant is again zero by (5.7) so

−s1
2
u2 +

1

6
u3 +

1

2
(u′)2 = 0 ⇔ 3(u′)2 = (3s − u)u2. (5.9)

Under the further assumptions u(ξ) ∈ (0, 3s) and taking the positive square-
root of the last expression, we get

√
3

u
√
3s − u

u′ = 1. (5.10)

This equation is not quite easy enough to be integrated by-hand but upon
the substitutions v2 = 3s− u, u′ = −2vv′ one finds

2
√
3

3s − v2
v′ = −1 ⇒ ln

(√
3s+ v√
3s− v

)

= −√
sξ + c2 (5.11)

where integration and the method of partial fractions have been used in
the last step (see Exercise (5.6)(a)). After a few further calculations, we
find up to a shift of the profile of the wave that

u(ξ) = 3s sech2
[√

s

2
ξ

]

⇒ u(x, t) = 3s sech2
[√

s

2
(x− st)

]

, (5.12)

which is also called a solitary wave or soliton. The calculation showed
that are several special features of the KdV equation:

(K1) it is “integrable” (formally: it can be viewed as an infinite-dimensional
Hamiltonian dynamical system with a lot of conserved quantities)
which is echoed by the fact that we were able to determine some of
the integrals of the moving frame ODE exactly,

(K2) there is a wave for every wave speed s,
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(K3) higher solitary waves move faster due to the relation between the
speed s and the amplitude 3s.

In general, we cannot expect such a special calculation to hold but it is a
great starting point for perturbation arguments, i.e., one is interested
in small perturbations of the KdV equation, which may not be integrable,
but some integrable features persist under perturbation. �

The travelling wave ansatz is interesting not only for equations, which
are first-order in the time derivative as demonstrated by the next example.

Example 5.2. Consider the Sine-Gordon equation

∂2ttu = ∂2xxu− sinu. (5.13)

A similar procedure as for KdV works. Using the travelling wave ansatz
and the assumption (5.7), a calculation (see Exercise 5.6) shows that

u(x, t) = 4 arctan

[

exp

(

− x− st√
1− s2

)]

(5.14)

is a family of travelling wave solutions. �

We continue to make very important general observations about the
ODEs obtained in the travelling wave frame and the full PDE system. To
illustrate this in a more concrete case, consider again (5.3), which we can
re-write as a first-order system

u′1 = u2,
u′2 = −su2 − f(u1).

(5.15)

So which solutions of (5.15) correspond to nice bounded travelling wave
profiles u(x − st)? Basically, bounded solutions connecting between the
steady states (u1, u2) = (a, 0) and (u1, u2) = (b, 0) of (5.15) correspond to
travelling wave solutions such that

lim
ξ→−∞

u(ξ) = a, lim
ξ→+∞

u(ξ) = b

as shown in Figure TODO with velocities tending to zero at infinity

lim
ξ→−∞

u′1(ξ) = lim
ξ→−∞

u2(ξ) = 0, lim
ξ→+∞

u′1(ξ) = lim
ξ→+∞

u2(ξ) = 0.

We also call a and b the endstates of the wave; see Figure TODO. The
next definition is valid for general ODEs and will be helpful for classifying
travelling waves.
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Definition 5.3. Consider the ODE du
dξ = f(u), u ∈ Rd, with steady states

u∗ and ũ∗.

• A solution u(ξ) is called a periodic orbit (or periodic trajectory) of
minimal period ξT > 0 if

u(ξ) = u(ξ + ξT ) (5.16)

and there is no smaller ξT such that (5.16) holds.

• A solution u(ξ) is called a heteroclinic orbit (or heteroclinic tra-
jectory, or just heteroclinic) between u∗ and ũ∗ if

lim
ξ→−∞

u(ξ) = u∗, lim
ξ→+∞

u(ξ) = ũ∗. (5.17)

• A solution u(ξ) is called a homoclinic orbit (or homoclinic trajec-
tory, or just homoclinic) to u∗ if

lim
ξ→−∞

u(ξ) = u∗ = lim
ξ→+∞

u(ξ). (5.18)

Remark : Alternatively, one could also have expressed the previous definition us-
ing the definitions of α- and ω-limit sets, for the flow ϕ(u0, t) associated to
u′ = f(u),

α(U) := {u ∈ Rd : ∃tj , tj → −∞ s.t. ϕ(u0, tj) → u for some u0 ∈ U},
ω(U) := {u ∈ Rd : ∃tj , tj → +∞ s.t. ϕ(u0, tj) → u for some u0 ∈ U}. (5.19)

For example, any point on a heteroclinic orbit from u∗ to ũ∗ has as the α-limit set
u∗ and as the ω-limit set ũ∗; see also Figure TODO.

Using Definition 5.3, the following observations/definitions are clear:

(H1) A periodic orbit of the travelling wave ODEs corresponds to a travel-
ling wave train solution of the associated PDE; see Figure TODO(a).

(H2) A homoclinic orbit of the travelling wave ODEs corresponds to a
travelling pulse solution of the associated PDE; see Figure TODO(b).

(H3) A heteroclinic orbit of the travelling wave ODEs corresponds to a
travelling front solution of the associated PDE; see Figure TODO(c).

Example 5.4. Suppose we study the Nagumo equation, i.e., (5.1) with
f(u) = u(1 − u)(u − p), say with p ∈ (0, 1). Then (5.15) implies that the
travelling wave ODE is

u′1 = u2,
u′2 = −su2 − u1(1− u1)(u1 − p),

(5.20)
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where the only steady states occur for ul = (0, 0), um = (p, 0) and ur =
(1, 0); see Figure TODO. The linearization at a steady state u∗ is given by

w′ =

(
0 1

p− 2(1 + p)u∗1 + 3(u∗1)
2 −s

)

w =: A(u∗)w. (5.21)

For example, if u∗ = ul then the eigenvalues λl of A(ul) satisfy the equation

(λl)2 + sλl − p = 0, ⇒ λl± = −s
2
±
√

s2

4
+ p

and it now follows that ul is a saddle point as λl− < 0 < λl+. Similarly, it can
be checked that ur is a saddle point as well and um is completely unstable
for s < 0 and stable for s > 0. It is instructive to sketch the phase portrait
as shown in Figure TODO. Suppose we are interested in left-moving front
solutions connecting the states u = 0 and u = 1. This means looking for a
heteroclinic orbit between ul and ur, which could potentially exist for some
s < 0; see Figure TODO. There are analytical proofs that there exists
precisely one s for which there is a trajectory

γ = γ(ξ), such that γ(−∞) = (0, 0) and γ(+∞) = (1, 0).

In particular, it can be shown that the unstable manifold W u(ul) and the
stable manifold W s(ur) are the same curve in the region {u1 > 0, u2 > 0};
see Figure TODO. A similar result holds regarding the existence of a unique
wave speed s > 0 for a right-moving front.

A viewpoint useful for analytical and numerical arguments is the fol-
lowing procedure:

(L1) Pick a codimension one submanifold M in phase space ’between’ the
two steady states we want to connect; for (5.20) a vertical half-line

M = {u ∈ R2 : u1 = κ, u2 > 0}

for some suitable fixed κ ∈ (0, 1) works well. Observe that the vector
field for (5.20) is tangent to M if and only if u2 = 0, so if we stay in
the positive quadrant this degenerate case does not concern us here.

(L2) Compute the intersection submanifolds of the manifoldsW u(ul),W s(ur)
with M

P l := M∩W u(ul), Pr := M∩W s(ur).

For (5.20) these are generically just two points. Note that all objects
obviously depend upon the choice of the wave speed parameter s,
although this is not shown in the notation.
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(L3) Define a bifurcation function by

Φ(s) := d(P l,Pr) (5.22)

where d(·, ·) is a suitable metric measuring the distance on M; for
(5.20) we can just take the Euclidean distance between two points;
see Figure TODO.

If we can find a zero s = s0 of the bifurcation function (Φ(s0) = 0) then
we have found a connecting orbit between the two steady states as desired.
This idea naturally generalizes into higher dimensions and is also called
Lin’s method and Φ(s) is the Lin gap. �

Another strategy worth being aware of can be useful if there is some
’integrability’ available in the system.

Example 5.5. Consider (5.20) in the standing wave case s = 0 and pick for
simplicity p = 1/4. Then we see that the resulting ODEs in the travelling
wave frame form a Hamiltonian system

u′1 = u2,
u′2 = −u1 (1− u1)

(
u1 − 1

4

)
,

↔ u′1 = − ∂H
∂u2

(u1, u2),

u′2 = ∂H
∂u1

(u1, u2),
(5.23)

whereH(u1, u2) := −1
2(u2)

2+ 1
8(u1)

2− 5
12(u1)

3+ 1
4 (u1)

4 is theHamiltonian
function or just ’the Hamiltonian’. The Hamiltonian is always a first
integral of the flow since

d

dt
H(u1, u2) =

∂H

∂u1
· u′1 +

∂H

∂u2
· u′2

(5.23)
= u′2 · u′1 − u′1 · u′2 = 0

so H is constant along trajectories. Hence, the level curves {H(u1, u2) =
constant} are trajectories of (5.23). If we want to find a stationary/standing
pulse solution of the original PDE (5.1) with the cubic Nagumo nonlinearity,
then it suffices to find a homoclinic orbit of the Hamiltonian ODEs (5.23),
which is just a bounded level curve of the Hamiltonian function containing
the origin. �

In summary, we have introduced several important dynamical systems
methods to find travelling waves: explicit integration, phase plane analy-
sis, Lin’s method, and Hamiltonian structure. However, there are many
more, such as the Conley index relating the area to algebraic topology or
analytical sub- and super-solution techniques; see references more details.

Exercise 5.6. (a) Justify the steps to go from (5.10) to the soliton solution
(5.12). (b) Derive the existence of the family of travelling waves (5.14) for
the Sine-Gordon equation. ♦
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Exercise 5.7. Consider (5.1) with the cubic nonlinearity f(u) = u(1 −
u)(u − p) with p ∈ (0, 1). Prove that u ≡ 0, 1 are stable stationary states
for this PDE, while u ≡ p is unstable for the PDE. Therefore, the situation
is also referred to as bistability. Hence, the stability of the travelling wave
ODEs do NOT provide information about the actual stability of solutions
for the PDE! ♦

Exercise 5.8. Consider Example 5.4 and study with any numerical method
of your choice, how the wave speed of a front depends upon the value of
p ∈ (0, 1). ♦

Background and Further Reading: The material in this section
is based upon [Eva02, GK09]. An excellent description of Lin’s method
can be found in [KR08]. For the Conley index and bistable equations
see [Smo94, MM02] and for sub- and super-solutions in the bistable case
[Che97].
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6 Pushed and Pulled Fronts

We again consider the one-dimensional reaction-diffusion PDE

∂tu = ∂2xxu+ f(u), u = u(x, t) ∈ R, x ∈ R, (6.1)

and we can again make the ansatz (5.2), i.e., u(x, t) = u(x− st) = u(ξ), to
study the travelling wave. In this section we will focus on the actual value
of the wave speed s.

Example 6.1. The main example in this section will be the FKPP non-
linearity

f(u) = u(1− u). (6.2)

This quadratic nonlinearity will turn out to have fundamentally different
properties from the bistable cubic nonlinearity discussed in detail in Section
5. Indeed, note that we have only two constant steady states u ≡ 0 and
u ≡ 1. The travelling wave frame ODEs are given by

u′1 = u2,
u′2 = −su2 − u1(1− u1),

(6.3)

where ′ = d
dξ and it is easily checked that ul = (0, 0) and ur = (1, 0) have

associated eigenvalues of the linearized system

λl± =
1

2

(

±
√

s2 − 4− s
)

, λr± =
1

2

(

±
√

s2 + 4− s
)

. (6.4)

Therefore, ul is a stable node if s ≥ 2 and an unstable source if s ≤ −2,
while ur is always a hyperbolic saddle; see Figure TODO. From Figure
TODO, it is apparent that there are infinitely many wave speeds s for
which front solutions could exist. �

One technique to understand the wave speed better is to try to linearize
directly on the level of the PDE (6.1). Suppose u∗ is a steady state of (6.1)
and also one of the endstates of the wave (e.g. u(ξ) → u∗ as ξ → +∞) we
want to analyze. Consider

∂tw = ∂2xxw + (Duf)(u
∗)

︸ ︷︷ ︸

=:a∗

w, w = w(x, t) ∈ R, x ∈ R, (6.5)

where linear equations describe the local stability and dynamics near u∗.
Note that we currently work on an unbounded domain. Hence, it is natural
to consider the spatial Fourier transform

ŵ(k, t) :=

∫

R

e−ikxw(x, t) dx, k ∈ R (6.6)
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as the problem is linear. Applying the Fourier transform to (6.5) yields

∂tŵ = (−ik)2ŵ + a∗ŵ ⇒ ŵ(t) = e((−ik)2+a∗)tŵ(0). (6.7)

The spatial Fourier modes decay if Re[(−ik)2 + a∗] = −k2 + a∗ < 0 for all
k ∈ R, while a mode k ∈ R grows if −k2+a∗ > 0. Hence, we can also check
if u∗ is stable if all Fourier modes decay to zero.

Example 6.2. Returning to the FKPP equation from Example 6.1, we
find

∂tw = ∂2xxw + (Duf)(u
∗)w =

{
∂2xxw + w, if u∗ = 0,
∂2xxw − w, if u∗ = 1,

(6.8)

so a∗ = ±1 in the notation above and we see that u∗ = 0 is unstable
while u∗ = 1 is stable. The travelling front u(ξ) we want to analyze is a
heteroclinic with the following properties (cf. Example 6.1)

u(−∞) = 0, u(+∞) = 1, if s < 0, front moves ’left’,
u(−∞) = 1, u(+∞) = 0, if s > 0, front moves ’right’,

see also Figure TODO. In particular, the front always propagates into the
unstable state. �

In the general case, another way to think about the linearized problem
is to substitute an ansatz similar to variation-of-constants idea

ŵ(k, t) = ŵ(k, 0)e−iω(k)t,

where ω = ω(k) will be called the (angular) frequency and k the wave
number, which yields

−iω = (−k2 + a∗) ⇔ ω = −i(k2 − a∗). (6.9)

Remark : Im[ω] is the actual ’physical’ angular frequency defined as 2π/period.
Also, observe that ŵ(k, 0) is just the Fourier transform of the initial condition
w(x, t = 0). Furthermore, there is an implicit sign convention as one may equally
well use −ω instead of ω.

Definition 6.3. A relation between wave numbers (or Fourier modes) k
and a frequency ω is called a dispersion relation.

In general, there is quite some confusion in the literature, what one
should call ’the’ dispersion relation. For example, another way to get ’a’
dispersion relation is to substitute a single Fourier-mode wave ansatz di-
rectly into the linearized problem

wk(x, t) = eikx+σt ⇒ σ = −k2 + a∗ (6.10)

is also usually called a dispersion relation, where Im[ω] = σ. Hence, there
is a choice whether we want to look at σ or just its imaginary part.
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Remark : The frequency ω = Im[σ] of the wave is related to the speed. Indeed,
if ω(k) = ks(k) is real then ei(kx+ωt) = eik(x+st) is travelling with ’phase velocity’
s = s(k). Since different wave numbers may have different speeds, it is possible
that an initial wave form disperses; this explains the name dispersion relation.
Also, note that

eik(x+st) + c.c. = eik(x+st) + e−ik(x+st) = 2 cos(k(x− st))

is then the real representation of the wave where c.c. denotes complex conjugate.

The next step is to finally tackle the wave speed problem. Consider the
following setup, which is assumed to hold throughout this section:

(P1) u∗ = 0 is an unstable state of (6.1),

(P2) the dispersion relation ω(k) is an analytic function when k ∈ C,

(P3a) w(·, 0) ∈ C∞
c (R,R) (smooth with compact support),

(P3b) w(x, 0) > 0 for some x ∈ R, w(x, 0) ≥ 0 for all x ∈ R,

(P4) xκ(t) is a (level) curve in R× [0,∞) such that w(xκ(t), t) = κ.

Observe that the time derivative of the level curve xκ can be used to
track the speed at which waves of an initial compact support spread to the
left or right into the unstable state as shown in Figure TODO.

Definition 6.4. A linear spreading speed s∗ ∈ (−∞,+∞) is any value,
which can be obtained as a well-defined limit of the form

s∗ = lim
t→+∞

dxκ
dt

(t)

and can be calculated by just using the linearized equation at the unstable
state.

Usually, we expect to have one linear spreading speed to the right and
one to the left if a front propagates into an unstable state; see Figure
TODO.

Proposition 6.5. Assume (P1)-(P4). Then any generic linear spreading
speed s∗ 6= 0 satisfies

s∗ =
dω

dk
(k∗), (6.11)

s∗ =
Im[ω(k∗)]

Im[k∗]
, (6.12)

where ω = ω(k) is the dispersion relation and k∗ ∈ C is a constant.
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It will be made clear in the following proof, what the role of k∗ ∈ C is.

Proof. Using variation-of-constants ansatz and the inverse Fourier trans-
form, we write the solution of the linearized problem in the original vari-
ables as

w(x, t) =
1

2π

∫

R

ŵ(k, 0)eikx−iω(k)t dk. (6.13)

Consider a travelling wave frame ξ := x − s∗t with some linear spreading
speed s∗. Then we obtain from (6.13) that

w(ξ, t) =
1

2π

∫

R

ŵ(k, 0)eik(ξ+s∗t)−iω(k)t dk

=
1

2π

∫

R

ŵ(k, 0)eikξe(iks
∗−iω(k))t dk

=
1

2π

∫

R

ŵ(k, 0)eikξ
︸ ︷︷ ︸

=:h(k)

eρ(k)t dk,

where ρ(k) := −iω(k)+ is∗k. By (P3a), we know that ŵ(k, 0) is analytic as
a function of k ∈ C and since eikξ is analytic it follows that h(k) is analytic.
We are interested in a fixed ξ and t → +∞ limit as we look for linear
asymptotic spreading speeds. Then, the main contribution of the integral

1

2π

∫

R

h(k)eρ(k)t dk, as t→ +∞, (6.14)

can be found by deforming the integration contour into the upper- or lower-
half in C as h(k) and ρ(k) are analytic by Cauchy’s Theorem [Gam01]. As a
fact, we accept that the method of steepest descents [BO99] shows that
the main contribution can be calculated if the integration contour contains
a point k∗ where ρ(k) varies least (so-called ’saddle points’; here we call k∗

the linear spreading point) but this just means

dρ

dk
(k∗) = 0.

By genericity, we know that the minimum is non-degenerate (any slight
perturbation does make it non-degenerate. Furthermore, we see that

dρ

dk
(k∗) = −i

dω

dk
(k∗) + is∗

!
= 0 (6.15)

from which (6.11) follows. For (6.12), we now evaluate the integral and the
dominant contribution is the integrand involving t evaluated at the saddle
point

1

2π

∫

R

h(k)eρ(k)t dk = eρ(k
∗)t + h.o.t, as t→ +∞.
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To have a linear spreading speed a consistency requirement is that the
leading-order term does neither grow or decay as we are in the moving
frame of the asymptotic linear spreading speed. This implies

Re[ρ(k∗)] = 0 ⇒ Re[−iω(k∗) + is∗k∗] = Im[ω(k∗)− s∗k∗] = 0

from which the second part in (6.12) follows easily.

Usually, there is more than just one linear spreading speed, e.g., two
linear spreading speeds for the left and right front. If we lift the genericity
requirement on ρ, i.e., we require less of the structure on the dispersion
relation and do not have that the minimum of ρ(k) is non-degenerate, there
are a lot more possibilities.

Example 6.6. It is helpful to work out, what Proposition 6.5 says about
our FKPP example (6.1)-(6.2). The dispersion relation follows from (6.9)
with a∗ = 1 as (6.8) has to be applied for the unstable state u∗ = 0

ω(k) = i(−k2 + 1) ⇒ dω

dk
= −2ik

so s∗ = −2ik∗ by (6.11). Since s∗ has to be real it follows that k∗ is purely
imaginary, say k∗ = iβ. Then (6.11) implies

2β = s∗ =
Im[ω(k∗±)]

Im[k∗±]
=
β2 + 1

β
,

so β = ±1 and we have

k∗± = ±i, s∗± = −2ik∗± = ±2.

So if we believe that the propagation into the unstable state of the FKPP
equation is governed by the behaviour of the front near the unstable state,
then we would expect that the selected wave speed satisfies |s| = 2. �

Definition 6.7. A travelling front propagating into an unstable state is
called a pulled front if the wave speed of the full nonlinear system equals
the linear spreading speed near the unstable state. Otherwise, the wave is
called a pushed front.

Giving a rigorous proofs for precise wave speed selection is a non-trivial
task and there are many results in the literature. It is a folklore result in
applied mathematics that for the FKPP equation, there can only be waves
for |s| ≥ 2, and that all ’sufficiently rapidly decaying’ initial conditions
converge to waves with minimal speed |s| = 2, i.e., the practically stable
nonlinear fronts are pushed fronts for the classical FKPP equation.
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Exercise 6.8. Prove the following asymptotics of an integral

∫ 1

0

eikt

1 + k
dk = − i

2t
eit +

i

t
+ h.o.t. as t→ +∞ (6.16)

using integration by parts repeatedly. It is frequently very useful in math-
ematics to be able to estimate Fourier-type integrals such as (6.16); for
more background see [BO99, Mil06]. ♦

Exercise 6.9. Consider the FKPP equation with convection/advection
given by

∂tu = ∂2xxu− κ∂xu+ u(1− u) (6.17)

and calculate the dispersion relation and the linear spreading speed. Fact:
(6.17) does generate pushed or pulled fronts depending on the parameter
κ ∈ R. ♦

Exercise 6.10. Consider the complex Ginzburg-Landau equation
(cGL)

∂tu = (1 + ic1)∂
2
xxu+ c2u− (1 − ic3)|u|2u, u = u(x, t) ∈ C (6.18)

where cj ∈ R, j ∈ {1, 2, 3}. Calculate the dispersion relation for the steady
state u∗ = 0, show that u∗ is unstable, and calculate the linear spreading
speed and the spreading point depending upon the cj’s. ♦

Background and Further Reading: The material in this section
is based upon [vS03]. Detailed proofs for the full nonlinear case of many
equations using sub- and super-solutions can be found in [VVV94]. The
FKPP equation is a cornerstone example in mathematical biology [Mur02].
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7 Sturm-Liouville and Stability of Travelling Waves

Having established some basic techniques and properties regarding exis-
tence and speed of travelling waves, it is natural to also look at stability
of waves.

Example 7.1. For u = u(x, t), (x, t) ∈ R× [0,+∞), consider the reaction-
diffusion PDE

∂tu = ∂2xxu− u+ 2u3. (7.1)

Then it can actually be checked that there is a standing (speed s = 0)
pulse solution

u(x, t) = u(x− st) = u(x− 0 · t) = U(ξ) = sech(ξ), (7.2)

i.e., U(ξ) solves the stationary problem for (7.1) with x replaced by ξ.
Following the usual local linearization paradigm, we consider u(x, t) =
U(ξ) + ǫw(ξ, t) and obtain

∂tw = ∂2ξξw + (6U(ξ)2 − 1)w =: Lw. (7.3)

Hence, we might expect that the eigenvalue problem

Lw = λw, λ ∈ C, w ∈ X, w = w(ξ), (7.4)

whereX is a suitable Banach space, can help us to determine the stability of
the pulse. In fact, the example shows that we should study linear operators
L, which are defined on an unbounded spatial domain and which depend in
general upon the travelling waves coordinate ξ as we have linearized around
the wave profile. �

On bounded domains, it was actually sufficient to just look at the eigen-
values. On unbounded domains, we have to consider a more general setup.
Let L : X → Y be a linear operator between two Banach spaces X,Y .

Definition 7.2. If N [L− λId] 6= 0 then λ ∈ C is called an eigenvalue.

The following definition is only relevant for the infinite-dimensional op-
erator case; see also Figure TODO.

Definition 7.3. The essential spectrum σess(L) consists of those λ ∈ C

such that L − λId is not a Fredholm operator of index zero. The point
spectrum is the complement, i.e., σpt(L) := σ(L) − σess(L) where σ(L)
denotes the spectrum of L as defined before.
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As a key classical example consider Sturm-Liouville operators (7.5)

Lw = ∂2ξξw + a1(ξ)∂ξw + a0(ξ)w, w = w(ξ), ξ ∈ R, (7.5)

where a0,1(ξ) are smooth coefficients decaying exponentially at infinity to
asymptotic values

lim
ξ→±∞

eν|ξ||a1(ξ)− a±1 | = 0, lim
ξ→±∞

eν|ξ||a0(ξ)− a±0 | = 0, (7.6)

for some ν > 0 and a±0,1 ∈ R. If we would have ξ ∈ Ω for some bounded
domain/interval Ω, then the results in Section 4 imply that L has only point
spectrum. However, on an unbounded domain, Sturm-Liouville operators
may have essential spectrum. For now, we shall not worry about this
problem and look at the point spectrum on unbounded domains.

Consider the Sturm-Liouville operator (7.5) as a mapping L : H2
µ(R) →

L2
µ(R), the subscript µ indicates that we endow the usualH2- and L2-spaces

with the weighted inner product

〈v,w〉µ :=

∫

R

v(x)w(x)µ(x) dx, µ(x) := e
∫ x

0
a1(y) dy. (7.7)

Then classical Sturm-Liouville theory provides the following result.

Theorem 7.4. (see [KP13]) Consider the eigenvalue problem Lw = λw
for the Sturm-Liouville operator L defined in (7.5) with the condition (7.6).
The point spectrum σpt(L) is given by a finite number of eigenvalues such
that

λ0 > λ1 > · · · > λN , λj ∈ R for all j ∈ {0, 1, 2, . . . , N}.

Furthermore, the eigenfunction ej for λj has j simple zeros, the eigenfunc-
tions are orthonormal in the inner product (7.7), and we have the formula

λ0 = sup
‖w‖µ=1

〈Lw,w〉µ (7.8)

where the supremum is achieved at w = e0.

Frequently, one also refers to e0 associated to (7.8) as the ground state.

Example 7.5. We continue with Example 7.1. Observe that (7.4) is an
eigenvalue problem for a Sturm-Liouville operator (7.5) with

a1(ξ) = 0, a0(ξ) = 6(U(ξ)2 − 1) = 6(sech2(ξ)− 1).
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The condition (7.6) holds with a±0 = −6 as sech(ξ) = 2/(e−ξ + eξ) decays
exponentially at ξ = ±∞ and easily with a±1 = 0. Next, differentating the
steady state equation

0 = ∂2ξξU − U + 2U3

it follows that

0 = ∂2ξξ(∂ξU)− ∂ξU + 6U2∂ξU = L(∂ξU).

So we have L(∂ξU) = 0 · (∂ξU). Since

(∂ξU)(ξ) = −sech(ξ) tanh(ξ) recall: tanh(ξ) =
eξ − e−ξ

eξ + e−ξ

it is easy to see that (∂ξU) decays exponentially at infinity. We conclude
that λ = 0 is an eigenvalue of L in H2

µ(R). Furthermore, (∂ξU)(ξ) has
precisely one zero at ξ = 0 (’the top of the pulse’, see Figure TODO). So
we must have λ1 = 0 in the notation of Theorem 7.4. Since Theorem 7.4
also yields the existence of a ground state eigenvalue λ0 > λ1 = 0 we see
that the point spectrum contains a positive eigenvalue, which implies that
the standing pulse solution of (7.1) is unstable. �

The goal is to prove a more general theorem about stability for equations
of the form

∂tu = ∂2xxu−F ′(u), u = u(x, t), x ∈ R, F : R → R, (7.9)

and F ′ denotes the derivative of the smooth potential F . Assume that
−F has three critical points at u = 0, p, 1 for p ∈ (0, 12) and u = 0, 1 are
minima, i.e.,

−F ′′(0) < 0, −F ′′(1) < 0

just means that u = 0, 1 are stable stationary states and we should think of
the classical bistable Nagumo equation with F ′(u) = −u(1− u)(u− p) as
an example. We can apply the phase-plane and Lin’s-type methods from
Section 5 to investigate the existence of travelling waves and summarize
the results here:

Theorem 7.6. Consider the one-dimensional bistable reaction-diffusion
equation (7.9) in one space dimension. Then there exists

• a standing pulse solution U(ξ) ≥ 0 with U(±∞) = 0,

• a travelling front solution U(ξ) ≥ 0 with U(−∞) = 0, U(+∞) = 1,
U ′(ξ) > 0, for a unique wave speed s = s∗ > 0.
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Both waves U(ξ) and their derivatives (∂ξU)(ξ) decay exponentially to their
asymptotic limits as ξ → ±∞.

Proof. The result follows using the methods in Section 5. Indeed, we use
Lin’s method to find the unique heteroclinic orbit that yields the posi-
tive monotone travelling front. We can adapt the Hamiltonian argument
from Example 5.5 to get the homoclinic orbit representing the standing
pulse. The exponential decay at the endstates just follows from the local
linearization at the hyperbolic saddle points of the travelling wave ODEs
in coordinates (u1, u2) = (u, ∂ξu) ∈ R2 associated to (7.9); see also Figure
TODO.

Theorem 7.7. Consider the same setup as in Theorem 7.6. Denote the
point spectra for the standing pulse and the travelling front by σpulsept and

σfrontpt respectively, and let z = a+ ib ∈ C, then

σpulsept ∩ {a > 0, b = 0} 6= {} (7.10)

σfrontpt ⊂ {a∗ < a < 0, b = 0} ∪ {0}, (7.11)

for some constant a∗ < 0 when the eigenvalue problem is considered on
H2

µ(R).

Proof. We start with the standing pulse denoted by U(ξ), which satisfies

∂2ξξU = F ′(U). (7.12)

The relevant eigenvalue problem is

Lw = λw, L = ∂2ξξ −F ′′(U),

so L is a Sturm-Liouville operator with a0(ξ) = −F ′′(U(ξ)) and a1(ξ) = 0.
As in Example 7.5, we differentiate (7.12) and obtain

0 = ∂2ξξ(∂ξU)−F ′′(U)(∂ξU) = L(∂ξU) (7.13)

so (∂ξU)(ξ) is an eigenfunction with eigenvalue λ = 0. Since (∂ξU)(ξ)
vanishes precisely once for ξ ∈ R by its phase-plane construction, we con-
clude from Theorem 7.4 that λ1 = 0 and the ground state has a positive
eigenvalue λ0 > 0, which proves (7.10).

For the second part, we use again the notation U(ξ) for the travelling
front, which solves

0 = ∂2ξξU + s∗∂ξU −F ′(U). (7.14)

The relevant eigenvalue problem is

Lw = λw, L = ∂2ξξ + s∗∂ξ −F ′′(U),
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so L is a Sturm-Liouville operator with a0(ξ) = −F ′′(U(ξ)) and a1(ξ) = s∗.
As before, direct differentiation of (7.14) shows that ∂ξU is an eigenfunction
with eigenvalue λ = 0. However, since U(ξ) is monotone (see Theorem
(7.6)) it follows that ∂ξU is the ground state so λ0 = 0 and Theorem 7.4
implies that all eigenvalues must be real and negative. The lower bound
in (7.11) follows also from Theorem 7.4 as the number of eigenvalues is
finite.

Remark : The eigenvalue λ = 0 always occurs due to translation invariance,
i.e., if U(ξ) is a travelling wave so is U(ξ + ξ0) for any ξ0 ∈ R; see also Section 8.
More generally, zero eigenvalues may arise due to other symmetries of the problem
as well.

Basically, Theorem 7.7 is a first step towards the folklore result that in
one-dimensional reaction diffusion equations in one space dimension, mono-
tone waves are stable while non-monotone waves are unstable. However,
this result fails miserably when we increase the dimension.

Example 7.8. Consider a version of the FitzHugh-Nagumo equation

∂tu = ∂2xxu+ u(1− u)(u− 0.1) − v,
∂tv = ǫ(u− v),

(7.15)

for x ∈ R. It is a well-known fact that for 0 < ǫ≪ 1 sufficiently small there
exists a travelling pulse solution for (7.15), which is stable. However, the
proof of this result is difficult; see references.

The last example shows that we cannot, despite the elegance, rely on
studying just one-dimensional cases based upon Sturm-Liouville theory.

Exercise 7.9. Prove that the Sturm-Liouville operator L with smooth
coefficient functions (7.5) is self-adjoint in H2

µ, i.e., 〈Lu, v〉µ = 〈u,L∗v〉µ
with adjoint operator L∗ = L. ♦

Exercise 7.10. Consider (7.9) and define the energy as E(u) := 1
2(∂xu)

2−
F(u). What is the relation between the energy and the Hamiltonian func-
tion of Example 5.5? ♦

Exercise 7.11. Show that studying the point spectrum of travelling fronts
in FKPP equation (6.1)-(6.2) for compactly supported initial perturbations
leads to an eigenvalue problem with Dirichlet boundary conditions. ♦

Background and Further Reading: This section was mainly based
upon the excellent book [KP13]. Example 7.1 can be found in [Kap05]. An
important survey of travelling wave stability results is [San01]. For classical
Sturm-Liouville theory a good source is [Wei87]. For the existence proof of
the FitzHugh-Nagumo pulse see [JKL01] and for stability [Jon84].

42



8 Exponential Dichotomies and the Evans Func-

tion

For the results in Section 7 we did rely crucially on classical Sturm-Liouville
theory to understand the spectrum. In this section, we develop the basics
of a more general theory for equations of the form

∂tu = A(∂x)u+ f(u), u = u(x, t), x ∈ R (8.1)

where A(·) is a polynomial of its argument and A(∂x) : X → X is a linear
operator on a suitable Banach space X and f is a mapping representing
the nonlinear terms.

Example 8.1. An excellent example to keep in mind for (8.1) are reaction-
diffusion systems

∂tu = D∆u+ f(u), u = u(x, t) ∈ RN , (8.2)

where D is a diagonal matrix with positive entries. �

Let U(ξ) = u(x − st) be a travelling wave solution for (8.1). Then
the first step to investigate (linear) stability of the wave is to consider the
operator

L := A(∂ξ) + s∂ξ + [(Duf)(U(ξ))] (8.3)

and study the eigenvalue problem Lw = λw.

Example 8.2. For (8.2) we find that

Lw = D∂2ξξw + s∂ξw + (Duf)(U(ξ))w.

The eigenvalue problem Lw = λw can be written as a first-order system
using dw

dξ = w̃

(
w′

w̃′

)

=

(
0 Id

D−1[λ− (Duf)(U(ξ))] −sD−1

)(
w
w̃

)

. (8.4)

where ′ = d
dξ . Note that the eigenvalue problem for v := (w, w̃) ∈ R2N has

the structure
v′ = A(ξ;λ)v = (Ã(ξ) +B(λ))v (8.5)

for matrix-valued functions Ã and B, which follow directly from (8.4). �

Since we work in one spatial dimension, we can always reduce to an
operator L which is a first-order differential operator acting on a space of
more function components as illustrated in Example 8.2. We still use L
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to denote this operator, i.e., the re-writing of (8.3) to a first-order ODE
system is understood. This spectrum of L can be studied by considering

Lw = λw ↔ (L− λ Id)w = 0,

which is equivelent to a first-order ODE system of the form

dv

dξ
= A(ξ;λ)v (8.6)

for some matrix-valued function A(ξ;λ) and for some v ∈ Rn; it helps again
to think of Example 8.2 to illustrate the general theory. Hence, we have to
study the family of linear operators

L(λ)v :=
dv

dξ
−A(·;λ)v.

We shall usually assume that we work in the spaces

X = C1
unif(R,C

n), Y = C0
unif(R,C

n), L = L(λ) : X → Y

so that L is a closed and densely-defined operator. We assume that the
matrix-valued function A ∈ Cn×n decomposes as

A(ξ;λ) = Ã(ξ) +B(λ) (8.7)

where Ã, B ∈ Rn×n are smooth; frequently one just has B(λ) = λB for a
constant matrix B. The spectral properties of L can obviously be studied
by looking at the ODEs

v′ = A(ξ;λ)v, (8.8)

which is a non-autonomous linear system as A depends upon the ’time’
variable ξ. In particular, we have to look for those λ, where L is not
invertible.

Definition 8.3. Denote by φ = φ(ξ, ζ) the fundamental solution (or
propagator) for the system (8.8), i.e.,

v(ξ) = φ(ξ, 0)v(0)

solves (8.8), φ(ξ, ξ) = Id for all ξ ∈ Rn, and φ(ξ, χ)φ(χ, ζ) = φ(ξ, ζ) holds
for all ξ, χ, ζ ∈ R.

Example 8.4. If the linear system would be autonomous

v′ = A(λ)v, v ∈ Cn, (8.9)
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then we could easily solve (8.9) using the matrix exponential and solutions
can be classified depending on their behaviour near the steady-state v ≡ 0.
For example, if the steady state is hyperbolic for some λ then there is a
splitting

Cn = Es(0;λ) ⊕ Eu(0;λ) = R[P s
0 (λ)] ⊕N [P s

0 (λ)]

where P s
0 is the spectral projection onto the stable eigenspace Es(0;λ)

for v ≡ 0. Note also that the stable and unstable subspaces are invariant
under the propagator φ(ξ, ζ) = e(ξ−ζ)A(λ) and solutions decay in forward
time in the stable space and in backward time in the unstable space. �

The right concept to generalize the splitting from the last example is
given in the next definition.

Definition 8.5. Let I = R+,R− or R and fix λ ∈ C. The ODE (8.8) has an
exponential dichotomy on I if there exist constants K > 0, κs < 0 < κu
and a continuous family of projectors P (ξ) for ξ ∈ I such that for ξ, ζ ∈ I
the following holds:

• ‖φ(ξ, ζ)P (ζ)‖ ≤ K eκs(ξ−ζ) for ξ ≥ ζ,

• ‖φ(ξ, ζ)[Id − P (ζ)]‖ ≤ K eκu(ξ−ζ) for ξ ≤ ζ,

• projections commute with evolution, i.e., φ(ξ, ζ)P (ζ) = P (ξ)φ(ξ, ζ).

The ξ-independent dimension N [P (ξ)] is also called the Morse index.
If the exponential dichotomies hold on R+ and R−, the associated Morse
indices are denoted by m+(λ) and m−(λ); see also Figure TODO.

Remark : It can be shown that L is a Fredholm operator if and only if it has
exponential dichotomies on R+ and R−. Furthermore, then m−(λ) − m+(λ) is
equal to the Fredholm index.

Theorem 8.6. (Palmer’s Theorem [Pal84, Pal88]) The following char-
acterization of spectrum and resolvent set of L holds:

(P1) λ 6∈ σ(L) if and only if (8.6) has an exponential dichotomy on R,

(P2) λ ∈ σpt(L) if and only if (8.6) has an exponential dichotomy on R+

and R− with the same Morse index and dim(N [L(λ)]) > 0,

(P3) If (P2) holds then N [P−(0;λ)]∩R[P+(0;λ)] ∼= N [L(λ)], where P±(ξ;λ)
denote the projections for the exponential dichotomies on R±,

(P4) λ ∈ σess(L) if we are not in the situation (P1) or (P2).
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Suppose we are interested in applying Palmer’s Theorem to the case of
a travelling front U(ξ) with

lim
ξ→±∞

U(ξ) = U∗
±,

with homogeneous endstates U∗
± ∈ RN . Consider (8.6) with A(ξ;λ) and

define
A±(λ) := lim

ξ→±∞
A(ξ;λ). (8.10)

It turns out that the asymptotic matrices A±(λ) can be used to characterize
the exponential dichotomies and hence, by Palmer’s Theorem, also the
spectrum.

Theorem 8.7. ([Cop78, San01]) Fix λ ∈ C, consider a travelling front
then the following results hold:

(F1) The ODE (8.6) has an exponential dichotomy on R+ if and only if
the matrix A+ is hyperbolic. In this case m+(λ) = dimEu

+(λ), where
Eu

+(λ) is the unstable eigenspace of A+(λ).

(F2) (F1) holds with R+ replaced by R− and A+(λ) replaced by A−(λ).

(F3) The ODE (8.6) has an exponential dichotomy on R if and only if it
has exponential dichotomies on R+ and R− with projections P±(ξ;λ)
such that N [P−(0;λ)] ⊕R[P+(0;λ)] = Cn.

Example 8.8. Here we use the previous results to gain more insight on sta-
bility for reaction-diffusion systems. Consider the bistable Nagumo equa-
tion

∂tu = ∂2xxu+ u(1− u)(u− p), p ∈
(

0,
1

2

)

, x ∈ R, u = u(x, t), (8.11)

with a right-moving travelling front solution U(ξ), ξ = x − st with s > 0,
as discussed in Section 5 with endstates U∗

− ≡ 0 and U∗
+ ≡ 1. A direct

calculation using the formulas (8.4)-(8.5) yields

A(ξ;λ) =

(
0 1

λ− f ′(U(ξ)) − s

)

=

(
0 1

λ+ 3U(ξ)2 − U(ξ)(2 + 2p) + p − s

)

so that the asymptotic matrices are

A−(λ) =

(
0 1

λ+ p − s

)

, A+(λ) =

(
0 1

λ+ 1− p − s

)

.
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Suppose we are interested in determining the essential spectrum and which
points lie outside of the spectrum, i.e., we look at point spectrum later. By
Palmer’s Theorem 8.6 and Theorem 8.7, we should check when the matrices
A±(λ) are hyperbolic. It is helpful to compute trace and determinant

det(A±(λ)) = −λ± p− U∗
±, tr(A±(λ)) = −s < 0.

The trace is real and negative and since it is the sum of the eigenvalues
µ±1 , µ

±
2 of A±(λ) it follows that if complex conjugate eigenvalues µ1 =

µ2 occured then those have negative real part so those eigenvalues must
be contained in the left-half plane. Hence, we focus on real eigenvalues
µ±1 , µ

±
2 ∈ R, which implies λ ∈ R as det(A±(λ)) = µ±1 µ

±
2 . By using the

trace-determinant analysis from Exercise 1.15 it follows that hyperbolic-
ity with real eigenvalues fails only when the determinant vanishes, which
happens when

−λ± p− U∗
± = 0, ↔ −λ− p = 0 or − λ+ p− 1 = 0

and since p ∈ (0, 1/2) by assumption, this can only happen when λ < 0.
This implies that for fixed p we have

σess(L) ⊂ {λ ∈ C : Re(λ) ≤ λb < 0}.

for some fixed negative λb. Therefore, linear instability can only arise via
the point spectrum. �

The last example shows that we would like to have a good tool to
locate the point spectrum, as it is usually quite easy to show that the
essential spectrum is contained in the left-half plane. Observe that Palmer’s
Theorem (P3) implies that one possibility is to look at the intersection

N [P−(0;λ)] ∩R[P+(0;λ)] (8.12)

and check when it is non-empty to characterize the point spectrum. This
means looking at bounded solutions as those lying in the intersection (8.12).
Indeed, R[P+(0;λ)] consists of all initial conditions v(0) with solutions v(ξ)
for (8.8), which decay exponentially as ξ → +∞, while N [P−(0;λ)] consists
of all initial conditions v(0) with solutions v(ξ), which decay exponentially
as ξ → −∞; see Figure TODO and also compare this to the weighted space
in the Sturm-Liouville problems in Section 7.

Suppose the essential spectrum is in the left-half plane and let Ω denote
the connected component of C−σess intersecting the right-half plane. One
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very nice device to study the intersection (8.12) for λ ∈ Ω is to consider
bases

v1(λ), . . . , vk(λ) of N [P−(0;λ)],
vk+1(λ), . . . , vn(λ) of R[P+(0;λ)],

where k = dim(N [P−(0;λ)]) is the Morse index; it can be shown that the
Morse index does not change in Ω and the bases can be chosen to depend
analytically [Kat80] upon λ.

Definition 8.9. The Evans function is defined as

E(λ) := det[v1(λ), . . . , vn(λ)]. (8.13)

Theorem 8.10. ([AGJ90, Eva72]) The Evans function E(λ) is analytic
for λ ∈ Ω and E(λ) = 0 if and only if λ is an eigenvalue of L.

Proof. If λ is an eigenvalue, then (8.12) is non-empty. Therefore, the bases
are linearly dependent and the determinant (8.13) vanishes. The converse
is equally simple. Analyticity of the Evans function follows from the ana-
lyticity of the bases.

In general, it is difficult to compute the Evans function explicitly, except
for certain special cases and integrable/conservative systems. However, it
provides a useful abstract theoretical as we as practical numerical tool.

Example 8.11. To see the difficulty in the computation of the Evans
function for reaction-diffusion systems consider the case from Example 7.1
given by

∂tu = ∂2xxu− u+ 2u3. (8.14)

with standing pulse solution U(ξ) = sech(ξ). Then we must eventually
understand the exponential dichotomy properties of the linear system

v′ = A(ξ;λ)v =

(
0 1

1 + λ− 6U(ξ)2 0

)

which can be turned into an autonomous system via setting dξ
dτ = 1 using the

new (dummy) time variable; note ξ(τ) = τ if we assume ξ(0) = 0. However,
in the autonomous case we still have the nonlinear term U(ξ) = sech(ξ) in
the problem. Hence, we are still left with understanding a nonlinear ODE
which is a highly non-trivial task. �

Example 8.12. The previous example can be generalized. For an N -
component reaction-diffusion system (8.2) with a nonlinearity f : RN →
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RN , we are facing the problem
(
u̇
˙̃u

)

=

(
ũ

D−1(−sũ− f(u))

)

(8.15)

(
ẇ
˙̃w

)

=

(
0 Id

D−1[λ− (Duf)(u)] − sD−1

)(
w
w̃

)

, (8.16)

ξ̇ = 1, (8.17)

which is an autonomous, fully-coupled, (4N + 1)-dimensional, nonlinear
system of ODEs. The 2N equations (8.15) come from the existence problem
in the travelling wave frame, the 2N equations (8.16) from the eigenvalue
problem to determine stability and ξ̇ = dξ

dτ makes the system autonomous
but represents another difficulty. Indeed, the ξ equation shows directly that
there are no steady states so we are always dealing, in some sense, with
trying to understand transients. �

However, for some systems with a special structure, one may actually
find the Evans function explicitly. Here we just quote a result to illustrate
this fact.

Example 8.13. Consider the following coupled hierarchy of Nonlinear
Schrödinger Equations (NLS) given by

∂tu = i
(
∂2xxu− 2u− 2u2v

)
,

∂tv = i
(
∂2xxv − 2v − 2v2u

)
,

(8.18)

where u = u(x, t), v = v(x, t) ∈ C. Then it turns out that a highly non-
trivial explicit calculation yields for a so-called ’stationary soliton solution’
the Evans function

E(λ) = 8a(λ)2b(λ)2
√
λ− i

√
λ+ i

where there are explicit formulas for a, b given by

a(λ) =
eiπ/4

√
λ− i− 1

eiπ/4
√
λ− i + 1

, b(λ) =
e−iπ/4

√
λ+ i− 1

e−iπ/4
√
λ+ i + 1

.

Now one has an explicit formula but then a new problem arises as E(±i) = 0
so one is always forced to deal with spectrum on the imaginary axis, which
- a priori - neither indicates stability or instability. �

However, we stress that a fundamental step has been discussed here, as
we have converted a full PDE problem for waves in one-dimensional spatial
domains into systems of ODEs, which elegantly links dynamics of ODEs to
existence and stability of travelling patterns of spatially-extended systems
posed on the spatial domain R.
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Exercise 8.14. Consider the reaction-diffusion system (8.2) and suppose
it has a travelling pulse or a travelling front solution U(ξ). Show that λ = 0
is always in the spectrum with associated eigenfunction U ′(ξ). ♦

Exercise 8.15. Prove that an autonomous linear system having a hyper-
bolic equilibrium point at the origin always satisfies an exponential di-
chotomy. What are the values of the Morse index for an autonomous linear
system? ♦

Exercise 8.16. Use Palmer’s Theorem to characterize the spectrum for
homogeneous rest states U(ξ) ≡ U∗ ∈ RN of (8.1). In particular, prove
that the point spectrum of U∗ is empty. This illustrates a fundamental
difference between spectra for problems on bounded domains in contrast to
unbounded domains. ♦

Background and Further Reading: The exposition here summa-
rizes several key aspects from the review [San01] with the last example from
[Kap05]; consider also [SS04]. A key paper developing, and naming, the
Evans function is [AGJ90]. The original work of Evans [Eva72] was actually
focused on trying to understand the stability of waves in FitzHugh-Nagumo
type reaction-diffusion systems and associated nerve impulse equations.
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9 Onset of Patterns and Multiple Scales

In this section, we are going to start with a concrete model problem to mo-
tivate the development of amplitude equations on a formal level. Consider
the Swift-Hohenberg equation

∂tu = [p− (∆ + 1)2]u− u3, u = u(x, y, t) ∈ R, (x, y) ∈ R2, (9.1)

where p ∈ R is a parameter and ∆ is the Laplacian; note that we deviate
from our convention to use x as the spatial variable as using (x, y) as
coordinates is going to simplify the notation later on. The Swift-Hohenberg
equation is an idealized model of convective instabilities in fluid dynamics.
Note carefully that the domain is Ω = R2. Therefore, we cannot expect
to capture the dynamical effects for bifurcations of steady states using the
point spectrum as we did in Sections 3-4 and the essential spectrum plays
a crucial role (cf. Exercise 8.16). Suppose we are interested in the stability
of u ≡ 0 and linearize (9.1) around u ≡ 0, then we obtain

∂tw = pw − (∆ + 1)2w, w = w(x, y, t). (9.2)

Substituting the dynamics of an individual Fourier mode

wk(x, y, t) = eσt+ik·(x,y)⊤ + c.c., k = (kx, ky)
⊤ ∈ R2,

where k is a wavevector, into (9.2) yields the following dispersion relation
(check it!)

σ = p− (k2 − 1)2, k2 := ‖k‖2. (9.3)

If p < 0 then σ < 0, so all modes decay. When p = 0, then the critical
modes, which are no longer linearly stable occur for wave numbers with
‖k‖ = 1. When p > 0 a whole band of wavenumbers is linearly unstable
and could occur in a pattern bifurcating from the homogeneous solution;
see Figure TODO. Let us assume we only look for a simple ’stripe’ pattern
at the bifurcation p = 0 of the form

u(x, y) = Aeix +Ae−ix = 2 Re(A) cos(x)− 2 Im(A) sin(x) (9.4)

with amplitude A. A formal perturbation ansatz based at the critical
wave number for the pattern (9.4) is given by

k = (1 + k̂x)

(
1
0

)

+ k̂y

(
0
1

)

.

If we also let p = ǫ2p̂, and substitute the wavevector perturbation into the
dispersion relation, we obtain

σ = ǫ2p̂− (2k̂x + (k̂x)
2 + (k̂y)

2)2. (9.5)
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Observe carefully that both directions x and y contribute to the same order
in (9.5) if we set k̂x ∼ ǫ, k̂y ∼ √

ǫ and σ ∼ ǫ2; see also Figure TODO. This
result provides a formal way to look at the size of the unstable band of
wavenumbers.

The main idea is now that very close to the bifurcation point, near the
onset of the pattern, the amplitude A in (9.4) is not stationary but will be
slowly modulated.

Remark : The assumption of slow modulation of the amplitude, also leads to the
names amplitude equation and modulation equation, which are the PDEs
we are going to derive below. In this section, the derivation will be formal, while
a rigorous justification will be provided in Section 10.

Therefore, we have several scales involved in the problem: the quickly
varying carrier wave eix and the slowly varying amplitude (or envelope)
A; see Figure TODO. Motivated by the dispersion relation, we consider the
slow/small variables

T := ǫ2t, X := ǫx, Y :=
√
ǫy,

and the fast/large variables x̃ := x, t̃ := t, for the ansatz

u(x, y, t) = u(x̃, ỹ, t̃;X,Y, T ) = A(X,Y, T )eix̃ + c.c., (9.6)

which is also called a multiple scales or two-scale ansatz. Furthermore,
we consider a regime near onset with p = ǫ2p̂ and note that the chain rule
formally prescribes the relations

∂x = ∂x̃ + ǫ∂X , ∂y = ∂ỹ +
√
ǫ∂Y , ∂t = ∂t̃ + ǫ2∂T . (9.7)

Substituting everything into the Swift-Hohenberg equation (9.1) and col-
lecting terms leads to

ǫ2∂Tu = ǫ2p̂u−
[
(1 + ∂2x̃x̃)

2 + 2ǫ(∂2x̃x̃ + 1)(2∂2x̃X + ∂2Y Y ) (9.8)

+2ǫ2∂2XX(∂2x̃x̃ + 1) + ǫ2(2∂2x̃X + ∂2Y Y )
2 + · · ·

]
u− u3,

where it has been used that u does not depend upon ỹ and t̃. It is now
convenient to drop the tildes and revert to the notation x for x̃. A clas-
sical ansatz to study equations such as (9.8), is to use an asymptotic
expansion

u = u0 + ǫu1 + ǫ2u2 + ǫ3u3 + · · · (9.9)

where each uj = uj(x,X, Y, T ) does not depend upon ǫ and u0 ≡ 0 as we
perturb near the trivial solution.
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Remark : One also refers to {ǫj}∞j=0 as an asymptotic sequence, i.e., limǫ→0 ǫ
j+1/ǫj =

0 for all j ∈ N0. In principle, other asymptotic sequences depending upon ǫ could
work as well such as {ǫj/2}∞j=0. Usually this involves some trial-and-error for each
problem at hand.

Inserting (9.9) into (9.8) we can collect terms at different orders of ǫ
and obtain for the first two orders

at O(ǫ): 0 = (∂2xx + 1)2u1 =: L(u1),
at O(ǫ2): L(u2) = −2(∂2xx + 1)(2∂2xX + ∂2Y Y )u1,

The procedure is to try to find u1 = u1(x,X, Y, T ) by solving the equations
’order-by-order’ so we start with

0 = (∂2xx + 1)2u1. (9.10)

Using the Fourier transform in the x-component with Fourier variable ξ ∈
R, we find

0 = [(−iξ)4 + 2(−iξ)2 + 1)]û1(ξ,X, Y, T ) = (ξ2 − 1)2û1(ξ,X, Y, T ). (9.11)

One possibility is that ξ = ±1 so in the x-component u1 is just a linear
combination of the Fourier modes e±ix and if we write

u1(x,X, Y, T ) = Ã(X,Y, T )eix + c.c., (9.12)

where the amplitude Ã(X,Y, T ) naturally incorporates the trivial solution
u1 ≡ 0 if Ã ≡ 0. Note that Ã = A/ǫ in comparison to the amplitude A in
the ansatz (9.4); again, we shall drop the tilde from now on so if we derive
an equation for A it is understood that variations of A on the scale O(1)
become small modulations on the original scale.

For the order O(ǫ2), we observe that it does not provide additional
information on u1 as we find the equation L(u2) = 0. We now assume that
the amplitude from solving L(u2) = 0 is zero, i.e., u2 ≡ 0. The interesting
part occurs at order O(ǫ3) which is given by

L(u3) = −∂Tu1 + [p̂− 2∂2XX(∂2xx + 1)− (2∂2xX + ∂2Y Y )
2]u1 − u31. (9.13)

If we assume that u3 is bounded as x→ ±∞ and the expansion is uniformly
valid in space-time, then the coefficients in front of e±ix of the right-hand
side of (9.13) must vanish. Instead of directly substituting (9.12) into (9.13)
a few preliminary calculations are helpful

∂Tu1 = (∂TA)e
ix + (∂TA)e

−ix,

(∂2xx + 1)u1 = (i2 + 1)Aeix + ((−i)2 + 1)Ae−ix = 0,

(2∂2xX + ∂2Y Y )u1 = (2i∂XA+ ∂2Y YA)e
ix + (−2i∂XA+ ∂2Y YA)e

−ix.
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So we already see that one term is going to vanish. Furthermore, we have
to differentiate the last expression once more, and also calculate the cubic
term, which yields

(2∂2xX + ∂2Y Y )
2u1 = (4i2∂XXA+ 4i∂3Y Y XA+ ∂4Y Y Y YA)e

ix

+(4i2∂2XXA− 4i∂3Y Y XA+ ∂4Y Y Y YA)e
−ix

= −4eix
(

∂X − i

2
∂2Y Y

)2

A− 4e−ix

(

∂X +
i

2
∂2Y Y

)2

A,

u31 = (Aeix +Ae−ix)3 = 3|A|2Aeix + 3|A|2Ae−ix + · · · ,

which shows that the coefficient of eix is just the complex conjugate of
the coefficient for e−ix so there is only one amplitude equation to satisfy.
Indeed, with the preparations inserting (9.12) into (9.13) easily yields

∂TA = p̂A− 3A|A|2 + 4

(

∂X − i

2
∂2Y Y

)2

A. (9.14)

There is a slight simplification of the previous equation if we re-scale

X̂ := X/2, Ŷ := Y/
√
2, Â :=

√
3A.

Using this scaling, and dropping all the hats from the variables in equation
(9.14), finally results in the classical version of the Newell-Whitehead-
Segel equation

∂TA = p̂A−A|A|2 +
(

∂X − i

2
∂2Y Y

)2

A. (9.15)

Using this equation, we can now study parameter variations of p̂; note that
ǫ2p̂ = p so p = O(ǫ2) corresponds to p̂ = O(1). Another amplitude equation
is obtained if we negelect the Y -dependence of the amplitude in (9.14) so
that

∂TA = p̂A− 3A|A|2 + 4∂2XXA, (9.16)

which in this context is called the (real) Ginzburg-Landau equation.
The ’real’ prefix is chosen, although A ∈ C, the coefficients for each term
are real; see also Section 10. Note carefully that (9.15) and (9.16) again
have the cubic nonlinearity we have become accustomed to, when dealing
with problems involving bifurcations from trivial branches.

It is emphasized that the calculation so far has been formal and we still
need to address the question, in what sense the Newell-Whitehead-Segel
and/or the Ginzburg-Landau equations really approximate true solutions
of the original system we started with. Indeed, it can be shown that the
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particular form of the Swift-Hohenberg equation we used as a starting point
does not matter as much as one would think: other pattern-forming prob-
lems lead to similar (classes of) amplitude equations. Hence, in some sense,
an amplitude equation can also be viewed as a ’normal form’ in the context
for pattern-formation on unbounded domains; see Exercise 9.2

Exercise 9.1. Consider the Swift-Hohenberg equation (9.1) and replace
∆ + 1 by ∆ + kc for some kc > 0. What changes in the derivation of the
amplitude equation? ♦

Exercise 9.2. Suppose that an abstract dispersion relation of the form
σ = p − (k2 − 1)2 + O([k2 − 1]3) as ‖k‖ → 1. Use the formal methods in
this section to show that the linear part of the amplitude equation (9.15)
is already prescribed by this dispersion relation. ♦

Exercise 9.3. Substitute A = R0e
iqX into (9.15) to determine a relation-

ship between p,q and R0. Explain, why this is related to the occurence of
solutions of the form u = R0e

i(1+ǫq)x; this is called a roll solution. ♦

Background and Further Reading: This section closely follows part
of the book [Hoy06], where a lot more details on pattern formation and
amplitude equations can be found. The classical survey of the area is
[CH93]. Other sources with similar flavour are [CG09, Pis06].
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10 Validity of Amplitude Equations

In Section 9 we have seen how to formally derive amplitude equations in
the context of the Swift-Hohenberg equation. Here we provide a proof of
the amplitude approximation. As before, we consider as a starting point
the Swift-Hohenberg equation

∂tu = Lpu− u3, Lp := p Id− (∂2xx + 1)2, (10.1)

where p ∈ R is a parameter and u = u(x, t) for x ∈ R. For the scalings

p = ǫ2, T = ǫ2t, X = ǫx,

and the formal ansatz

uA(x, t) := ǫ(A(X,T )eix + c.c.) (10.2)

we already know from Section 9 that the amplitude A = A(X,T ) is ex-
pected to satisfy the (real) Ginzburg-Landau equation

∂TA = A− 3A|A|2 + 4∂2XXA. (10.3)

The question now is in what sense does uA approximate u?

Theorem 10.1. Let u denote the solution of (10.1). For each T0 > 0 and
κ > 0 there exist ǫ0,K > 0 such that for all ǫ ∈ (0, ǫ0) the following holds:
If

|u(x, 0) − uA(x, 0)| ≤ κǫ2

then we have the estimate

|u(x, t)− uA(x, t)| < Kǫ2, for all (x, t) ∈ R× [0, T0/ǫ
2], (10.4)

where uA is given by (10.2) and A solves (10.3).

Remark : Note that uA and u are O(ǫ) near criticality so the error is one order
higher in Theorem 10.1. Furthermore, it is natural that we only get a finite-time es-
timate as the Ginzburg-Landau equation only approximates the Swift-Hohenberg
equation. However, the closer we get to criticality as ǫ → 0, the better the ap-
proximation becomes.

Before proving the result, we state a helpful lemma and motivate the
strategy.

Lemma 10.2. For the linearized operator L0 at criticality we have

−L0(B(ǫx)ekix) = [(1− k2)2B + ǫ4ik(1 − k2)B′

+ǫ2(2− 6k2)B′′ + ǫ34ikB′′′ + ǫ4B′′′′]eikx
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The proof is left as an exercise calculating derivatives. Using Lemma
10.2 it is easy to see that substituting uA into (10.1) yields

ǫ3eix∂TA = [ǫ3eixA+4ǫ3eix∂2XXA−3ǫ3eixA|A|2]+ ǫ3e3ixA3+O(ǫ4) (10.5)

with the complex conjugate terms understood on both sides. Therefore,
the residual error is of order O(ǫ3) and given by the term ǫ3e3ixA3. Upon
integrating the equation up to time T0/ǫ

2, a total error of O(ǫ) seems to
remain and this is not good enough. The idea of the following proof is to
use a modified approximation.

Proof. (of Theorem 10.1) The improved approximation is defined as

vA(x, t) = ǫA(X,T )eix − ǫ3

64
A(X,T )3e3ix + c.c.

The idea is to study the error by looking at

R(x, t) :=
u(x, t)− vA(x, t)

ǫ2
.

If we can show that
‖R(x, t)‖∞ = sup

x∈R
|R(x, t)|

is bounded for t ∈ [0, T0/ǫ
2] by a constant independent of ǫ, then we have

|u(x, t) − uA(x, t)| = |ǫ2R(x, t)− ǫ3(A3e3ix + c.c.)/64| = O(ǫ2)

for (x, t) ∈ R×[0, T0/ǫ
2] and the result follows. Hence, it remains to analyze

R(x, t). We calculate

ǫ2∂tR = ∂tu− ∂tvA

= ∂tu− L0u− ǫ2u+ u3
︸ ︷︷ ︸

=0

+L0u+ ǫ2u− u3 − ∂tvA

= L0(ǫ
2R+ vA) + ǫ2(ǫ2R+ vA)− (ǫ2R+ vA)

3 − ∂tvA

= ǫ2L0R+ ǫ2R(ǫ2 − 3v2A) + ǫ3(−ǫ3R− 3ǫR2vA)

−∂tvA − v3A + ǫ2vA + L0vA.

Upon grouping terms and dividing through by ǫ2 we find

∂tR = L0R+ ǫ2a(x, t; ǫ)R + ǫ3b(x, t,R; ǫ) + ǫ2r(x, t; ǫ) (10.6)

where a(x, t; ǫ) = 1 − 3(vA/ǫ)
2, b(x, t,R; ǫ) = −ǫR3 − 3(vA/ǫ)R

2 and
r(x, t; ǫ) = [−∂tvA − v3A + ǫ2vA +L0vA]/ǫ

4. The last term is the interesting
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one since

−ǫ4r(x, t; ǫ) = ∂tvA + v3A − ǫ2vA − L0vA

= ǫ3
[

(∂TA− 4∂2XXA−A)eix − (1− 32)2
1

64
A3e3ix + c.c.

]

+ǫ3(Aeix + c.c.)3 +O(ǫ4)

by applying Lemma 10.2. Indeed, the O(ǫ3)-term in the last expression
complete vanishes (which explains the choice of prefactor 1/64) and this
shows that r(x, t; ǫ) is bounded over (0, ǫ0) × [0,∞) × R. Furtermore, we
have for our given κ > 0 that

|R(x, 0)| ≤ 2κ

if ǫ0 is chosen sufficiently small. To study (10.6) we are going to use some
basic semigroup theory; see Section TODO. In particular, we drop the x-
variable in the notation and write (10.6) as

∂tR = L0R+ h(t), R(0) = R0. (10.7)

The linear part ∂tR = L0R is solved by a uniformly bounded strongly
continuous semigroup etL0 when the equation is considered on Cb(R) with
the usual supremum norm ‖ · ‖∞; see Lemma 10.3. Hence we may write
the solution of (10.7), respectively (10.6), via the variation-of-constants
formula or Duhamel’s formula

R(t) = etL0R(0) +

∫ t

0
e(t−s)L0h(s) ds (10.8)

= etL0R(0) + ǫ2
∫ t

0
e(t−s)L0 [a(s; ǫ)R(s) + ǫb(s,R(s); ǫ) + r(s; ǫ)] ds

For a given δ > 0 we have ‖b(s,R(s); ǫ)‖∞ ≤ Kb for all R with ‖R(s)‖∞ ≤
δ and ǫ ∈ (0, ǫ0). Since the semigroup is uniformly bounded we have
‖esL0‖∞ ≤ K for some K > 0. We can also ensure that ‖r(s; ǫ)‖∞ ≤ K by
the argument above about the boundedness of r and clearly |a(s; ǫ)| ≤ K.
Then one estimates (10.8) and obtains

‖R(t)‖∞ ≤ 2Kκ+

∫ t

0
ǫ2K2‖R(s)‖∞ ds+ ǫ2tK(ǫKb +K) (10.9)

as long as ‖R(s)‖∞ ≤ δ holds. Gronwall’s inequality (see Exercise 10.6)
applied to (10.9) yields

‖R(t)‖∞ ≤ [2Kκ+ T0K(ǫKb +K)]eǫ
2K2t (10.10)

and for t ≤ T0/ǫ
2, we can easily see that upon making ǫ small so that

ǫKb ≤ K, we find that ‖R(t)‖∞ is bounded independent of ǫ.
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Lemma 10.3. ([KSM92, Lem.2.3]) The semigroup etL0 : Cb(R) → Cb(R)
is strongly continuous and uniformly bounded.

We shall not prove this result here but instead remark that the main
idea of the proof to insert a clever approximation to remove higher-order
correction terms, is not limited to the Ginzburg-Landau equation. Consider
the sine-Gordon equation

∂2ttu = ∂2xxu− sinu, u = u(x, t), x ∈ R. (10.11)

Then it is shown in Exercise (10.7) that the dispersion relation for the
linearized sine-Gordon equation is given by ω2 = k2 + 1.

Definition 10.4. For a given dispersion replation ω(k), the group veloc-
ity ν is defined by ν := dω

dk .

The solutions we are interested in for the sine-Gordon equation are of
the form

uA(x, t) = ǫA(ǫt, ǫ(x− νt))ei(kx−ωt) + c.c.. (10.12)

It can be shown using a formal calculation via the method of multiple scales
as in Section 9 that the amplitude A satisfies the nonlinear Schrödinger
equation (NLS)

2iω∂TA = (ν2 − 1)∂TA+
1

2
A|A|2. (10.13)

Theorem 10.5. ([KSM92]) Let u denote the solution of (10.11). For each
T0 > 0 and κ > 0 there exist ǫ0,K > 0 such that for all ǫ ∈ (0, ǫ0) the
following holds: If

‖u(·, 0) − uA(·, 0)‖L2(R) ≤ κǫ3/2

then we have the estimate

‖u(·, t)−uA(·, t)‖L2(R) < Kǫ3/2, for all (x, t) ∈ R× [0, T0/ǫ
2], (10.14)

where uA is given by (10.12) and A solves (10.13).

Theorem 10.5 can be proven in a similar way as Theorem 10.1. One
has to consider the linearized semigroup on a different Banach space. Fur-
thermore, a new improved approximation has to be used as discussed in
Exercise 10.8.
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Exercise 10.6. Prove Gronwall’s inequality, i.e., show that for a given
time interval (a, b) ⊂ R and continuous functions α, β, g the inequality

g(t) ≤ α(t) +

∫ t

a
β(s)g(s) ds, ∀t ∈ (a, b),

implies that

g(t) ≤ α(t) +

∫ t

a
α(s)β(s) exp

(∫ t

s
β(r) dr

)

ds,

for t ∈ (a, b). Show that if in addition α(t) non-decreasing then

g(t) ≤ α(t) exp

(∫ t

a
β(r) dr

)

,

which is the version we used above. ♦

Exercise 10.7. Show that the dispersion relation for the linearized sine-
Gordon equation is given by ω2 = k2 + 1 using the ansatz ei(kx−ωt). ♦

Exercise 10.8. Show that the improved approximation for the sine-Gordon
equation leading to the NLS equation is given by

vA(x, t) = ǫA(X,T )ei(kx−ωt) − 1

54k2 − 54ω2 + 6
ǫ3A(X,T )e3i(kx−ωt) + c.c.,

where T = ǫ2t and X = ǫ(x− νt). ♦

Background and Further Reading: This section is based upon the
paper [KSM92] which developed the idea of using improved approxima-
tions to get rid of certain error terms. Other approaches to prove validity
of amplitude equations can be found in [CE90, vH91]. For more on the
sine-Gordon equation see [CMKW14]. The GLE and NLS equations are
amplitude equations for many different problems, e.g., the NLS equation is
an amplitude equation for certain water wave problems [Lan13].
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11 Semigroups and Sectorial Operators

For some time-dependent dynamical problems, it will be convenient to have
the language and some basic results from semigroup theory available.

Definition 11.1. Let X be a Banach space. A (strongly continuous)
semigroup on X is a family of continuous linear operators {S(t)}t≥0 on
X such that

(S1) S(0) = Id,

(S2) S(t)S(s) = S(t+ s) for t, s ≥ 0,

(S3) ‖S(t)u− u‖X → 0 as tց 0 for every u ∈ X.

Remark : Flows generated by sufficiently smooth ODEs are automatically semi-
groups. In fact, they are groups as (S2) also holds for negative times.

All semigroups we consider will be strongly continuous so we omit this
prefix. However, Definition 11.1 can be modified by requiring additional
regularity, e.g., S(t) is an analytic semigroup if t 7→ S(t)u is real analytic
for t ∈ (0,+∞) and every u ∈ X.

Definition 11.2. The infinitesimal generator of a semigroup S(t) :
X → X is defined by

Au := lim
tց0

1

t
(S(t)u− u)

with domain D(A) consisting of all u ∈ X, where the limit exists. If the
generator can be identified, then we write S(t) = etA.

An important example is the linear ODE du
dt = Au, where the ma-

trix A ∈ Rd×d is easily seen to be the infinitesimal generator of the flow
φ(u0, t) = u(t), which also defines a semigroup S(t).

Example 11.3. The natural example from the context of PDEs is the heat
equation

∂tu = ∆u, (x, t) ∈ Ω× [0,+∞), u = u(x, t) ∈ R, (11.1)

say for Ω = [0, 1] and with Dirichlet boundary conditions for simplicity. We
shall see below that A = ∆ is the infinitesimal generator for an analytic
semigroup et∆ : L2(Ω) → L2(Ω) with D(∆) = H1

0 (Ω) ∩H2(Ω). In fact, ∆
is also a closed and densely defined operator on L2(Ω). �

The next definition is useful to set up an abstract framework to check,
which operators generate (analytic) semigroups.
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Definition 11.4. A linear operator A : X → X is called sectorial if it is
closed, densely defined, and for some θ ∈ (π2 , π), M ≥ 1, a ∈ R, the sector

Sa,θ := {λ ∈ C : | arg(λ− a)| ≤ θ, λ 6= a}

is contained in the resolvent set ρ(A) := C− σ(A), and furthermore

‖(λ Id−A)−1‖ ≤ M

|λ− a| (11.2)

for all λ ∈ Sa,θ.

We refer to Figure TODO for an illustration of the sector Sa,θ.

Remark : Slightly different versions of the definition of sectorial operators exist,
particularly regarding sign conventions.

Example 11.5. Continuing Example 11.3 with ∆ = ∂2xx on Ω = [0, 1] we
know from Section 4 that the eigenvalues of ∂2xx are λn = −(πn)2 with
n ∈ {1, 2, 3, . . .}. So ∂2xx is a sectorial operator on L2(Ω), with

D(∂2xx) = {u ∈ L2(Ω) : ∂2xxu ∈ L2(Ω)} = H1
0 (Ω) ∩H2(Ω), (11.3)

where we could e.g. take a = 0 and any θ ∈ (π2 , π) in Definition 11.4.
In fact, the Laplacian considered with suitable boundary conditions on a
sufficiently regular domain Ω ⊂ Rd and many other elliptic operators turn
out to be sectorial. �

Theorem 11.6. ([Hen81]) If A is sectorial then A is the infinitesimal
generator of an analytic semigroup etA with the representation formula

etA =
1

2πi

∫

Λ
(λ Id−A)−1eλt dλ, (11.4)

where Λ is a contour in ρ(A) with arg(λ) → ±θ∗ as |λ| → +∞ for θ∗ ∈
(π2 , π). Furthermore, if Re(λ) < a for λ ∈ σ(A) then

‖etA‖ ≤ Keat, for t > 0 (11.5)

and some K > 0.

See also Figure TODO for an illustration. The Dunford integral
(11.4) involving the resolvent (λId− A)−1 of A is frequently key to work
with semigroups as it often convenient to work with resolvents.
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Example 11.7. We continue with Example 11.5. Let u0 = u(x, 0) be the
initial value. Since the operator ∆ = ∂2xx is sectorial, Theorem 11.6 implies
that it generates the analytic semigroup et∆. Therefore, the heat equation
(11.1) is solved by

u(t) = et∆u0. (11.6)

However, by separation of variables we can solve the heat equation by

u(x, t) =

∞∑

n=1

eλnt〈en, u0〉L2(Ω)en(x),

where en(x) =
√
2 sin(nπx) is the eigenfunction for λn. This gives concrete

formulas to work with A and etA by their action on basis functions. For
example, we have

(λ Id−∆)−1v =
∞∑

n=1

(λ− λn)
−1 〈en, v〉L2(Ω) en(x)

for v ∈ L2(Ω). Another example defining (−∆)α and computing D((−∆)α)
for α ≥ 0 is considered in Exercise 11.13. �

One may generalize the previous observations about (−∆)α.

Definition 11.8. Suppose A is a sectorial operator and Re(σ(A)) < 0.
Then for any α > 0 define

(−A)−α :=
1

Γ(α)

∫ ∞

0
tα−1etA dt,

where Γ(α) denotes the gamma function (recall Γ(n) = (n−1)! for n ∈ N

and Γ(α) =
∫∞
0 xα−1e−x dx for α ∈ C− {0,−1,−2, . . .}).

Theorem 11.9. ([Hen81, Thm.1.4.2]) If A is sectorial with Re(σ(A)) < 0,
then for any α > 0, the operator (−A)−α is bounded and injective.

The last theorem shows, why it is sometimes nicer to analyze A via its
negative powers. Furthermore, one can also use a similar idea with positive
exponents to define spaces, which turns out to be very suitable for many
dynamical problems.

Definition 11.10. Let A be sectorial on X and fix a ∈ R such that A1 :=
A+ a Id satisfies Re(σ(A1)) < 0. For α ≥ 0, define the fractional power
space Xα := D(Aα

1 ) with the norm ‖x‖α := ‖(−A1)
αx‖X for x ∈ Xα.
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The norms ‖ · ‖α turn out to be equivalent for different feasible choices
of a ∈ R. It is easy to see that Xα are Banach spaces. The main reason to
use the spaces Xα is that they provide well-defined domains for operators.
Furthermore, there are embedding theorems for X = Lp(Ω) which show,
under suitable conditions, that Xα is a subset of smooth functions Ck(Ω)
or inside some Sobolev space W k,q(Ω) for some values k, q. As before, we
shall not worry about regularity assumptions and just select the domain,
the boundary and initial data, and those equations, which are sufficiently
regular.

The next step is to move from the linear problem du
dt = Au to the

inhomogeneous problem

du

dt
= Au+ f(t), u ∈ X, f : (0, T ) → X, u(0) = u0. (11.7)

If A generates a strongly continuous semigroup etA, then we may always
consider a mild solution to (11.7) given by

u(t) = etAu0 +

∫ t

0
e(t−s)Af(s) ds. (11.8)

Theorem 11.11. ([Hen81, Thm.3.2.2]) Consider (11.7) and assume that
A is a sectorial operator. Furthermore, suppose f : (0, T ) → X is continu-
ous and

∫ ρ
0 ‖f(t)‖ dt < +∞ for some ρ > 0. Then there is a unique strong

(classical) solution of (11.7) which coincides with the mild solution (11.8).

Although the Laplacian, classical elliptic operators on L2 and the re-
lated nonlinear problems are key examples in semigroup theory for PDEs,
the framework is obviously not limited to this setup as the next example
illustrates.

Example 11.12. Consider the linear evolution equation

∂tu = L0u := −(1 + ∂2xx)
2u, u = u(x, t), x ∈ R, (11.9)

arising in the context of the Swift-Hohenberg equation; see also Section
(10). In fact, it is relatively easy to check that

etL0 : Cb(R) → Cb(R)

is a strongly continuous semigroup. Lemma 10.3 states that the semigroup
is uniformly bounded. Although we do not give a full proof, let us motivate
this fact formally. The dispersion relation (9.3) yields that at criticality the
spectrum touches the imaginary axis precisely at zero and the rest of the
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(essential) spectrum is contained in the left-half complex plane. Hence, it
is natural to consider Definition 11.4 with a sector S0,θ. It turns out that
θ = 2π/3 is a good choice for the angle; see Figure TODO. Motivated by
(11.2), we aim to estimate the resolvent. Consider ω := (−λ)1/2, Im(ω) > 0
and the operator splitting

L0v − λv = −(1 + ∂2xx + ω)(1 + ∂2xx − ω)v = h

for some h. This yields the solution

v = (L0 − λ)−1h = −[Gβ+ ◦Gβ−]h, β± = (−1± ω)1/2, Re(β±) > 0,

where the operator

[Gβh](x) = −
∫

R

1

2β
e−β|x−ξ|h(ξ) dξ (11.10)

can be derived using Fourier transforms; see Exercise 11.15. Therefore, we
obtain

‖(L0 − λ Id)−1‖ ≤ 1

|β+|Re(β+)
1

|β−|Re(β−)
≤ 1

Re(β+)Re(β−)

1
√

|1 + λ|
. (11.11)

From this inequality it is not too difficult to obtain that

‖(L0 − λ Id)−1‖ ≤ M

|λ| (11.12)

for all λ ∈ S0,θ. Then we may conclude sectoriality and employ the Dunford
integral (11.4) to see that the semigroup is uniformly bounded. �

Exercise 11.13. Consider the 1-dimensional Laplacian ∆ = ∂2xx with
Dirichlet boundary conditions on Ω = [0, 1] from Example 11.7 and de-
fine

(−∆)αv =
∞∑

n=1

(−λn)α 〈en, v〉L2(Ω) en(x)

for v ∈ L2(Ω) where λn denotes the eigenvalue of ∆ with eigenfunction en.
Prove that

D((−∆)α) =

{

v ∈ L2(Ω) :

∞∑

n=1

λ2αn 〈en, v〉2L2(Ω) < +∞
}

. (11.13)

Furthermore, prove that D((−∆)1/2) = H1
0 (Ω). Note that this exercise

generalizes to a domain Ω ⊂ Rd, d ≥ 1. ♦
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Exercise 11.14. Show that if −A is positive definite and self-adjoint then
so is (−A)α for all α > 0. ♦

Exercise 11.15. Consider Example 11.12 and formally solve the equation

(1 + ω + ∂2xx)v = h, v = v(x), x ∈ R,

using the Fourier transform; this calculation essentially yields (11.10). Fur-
thermore, prove that (11.11) implies (11.12) for λ ∈ S0, 2

3
π. ♦

Background and Further Reading: This section is mainly based
upon the introduction to analytic semigroups in [Hen81]. Other important
sources for semigroup theory are [EN00, Paz83]. The uniform bounded-
ness of the linearized Swift-Hohenberg equation at criticality is taken from
[KSM92].
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12 Dissipation and Absorbing Sets

Roughly speaking, dissipation refers to the frequent occurence in partial
differential equations, that the dynamics of the system contracts or reduces
to a subset of phase space.

Example 12.1. Prototypical examples for dissipative systems are reaction-
diffusion equations such as

∂tu = ∆u+ f(u), (x, t) ∈ Ω× [0,+∞), u = u(x, t), (12.1)

for a suitable sufficiently smooth nonlinearity f : R → R on a bounded
smooth domain Ω ⊂ Rd with Dirichlet boundary conditions u(x) = 0 for
x ∈ ∂Ω. �

Let X be a Banach space and suppose we may view the solution of the
PDE u(x, t) with initial condition u0 ∈ X as a semiflow (or nonlinear
semigroup)

S(t)u0 = u(x, t), S(t) : X → X.

In particular, S(t) satisfies S(0) = Id, S is continuous in t and in the
argument u0, and S(t+ s) = S(t)S(s) for t, s ≥ 0; see also Definition 11.1.
There are several different notions of dissipativity. For us, the following
will suffice:

Definition 12.2. S(t) is called (bounded) dissipative if there exists a
bounded set B ⊂ X, such that for each bounded set Y there exists a time
tY such that S(t)Y ⊂ B for all t ≥ tY .

The previous statement can be re-phrased loosely by saying that there
exists a bounded absorbing set for the dynamics.

Remark : Frequently one also finds explicit requirements on the dynamics such
as a dissipative estimate

‖S(t)u0‖X ≤ Q(‖u0‖X)e−αt +K

for some constants K,α > 0 and a monotone increasing function Q.

The natural question to ask is, which PDEs are actually dissipative?

Example 12.3. (Example 12.1) We continue with the reaction-diffusion
equation (12.1) and make the additional assumptions

−K − α1|v|p ≤ f(v)v ≤ K − α2|v|p, f ′(v) ≤ Kd, (12.2)

for all v ∈ R and some constants K,Kd, α1,2 > 0. It also helps to simplify
the calculations to require f(0) = 0. A typical example is the case

f(v) = v − v3.
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Indeed, in this case we have

−|v|4 ≤ f(v)v = v2 − v4 ≤ K − 1

2
|v|4

and the upper bound on the derivative is trivial to show. Under the as-
sumptions (12.2) it is not difficult to see that S(t)u0 = u(x, t) yields a
semiflow with

u(t) ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;D((−∆)1/2)) (12.3)

and we know from Exercise 11.13 that D((−∆)1/2) = H1
0 (Ω). Furthermore,

we expect from Theorem 11.11 that solutions should be classical ones for
many cases of the nonlinearity f . �

A main strategy to prove the existence of a suitable bounded absorbing
set is to consider a PDE on a suitable Banach space X on which the differ-
ential operators appearing in the equation are at least densely-defined and
which is “tractable” analytically. For the reaction-diffusion equation (12.1)
one excellent guess is to take X = L2(Ω).

Theorem 12.4. Suppose (12.1) satisfies (12.2). Then there exists con-
stants K1,K2 > 0 and a time tu0

> 0 such that

‖u(t)‖L2(Ω) ≤ K1 (12.4)

for all t ≥ tu0
. Furthermore, we have the bound

∫ t+1

t
‖u(s)‖2H1

0
(Ω) ds ≤ K2 (12.5)

for all t ≥ tu0
.

Proof. The domain Ω will be dropped as a subscript in the spatial norm
notation throughout the proof. We write (12.1) in the form

du

dt
−∆u = f(u), u = u(t) = u(x, t), (12.6)

and take the L2-inner product with u, which yields

1

2

d

dt
‖u‖2L2 + ‖u‖2H1

0

=

∫

Ω
f(u(x))u(x) dx ≤

∫

Ω
K − α2|u|p dx, (12.7)

where we used (12.2) in the last inequality. In the next step, we use a
version of the Poincaré inequality given by

‖u‖L2 ≤ λ−1/2‖∇u‖L2 = λ−1/2‖u‖H1
0
,
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where λ > 0 is the smallest eigenvalue of −∆ on Ω. Using this inequality
and dropping the negative term on the right-hand side in (12.7) leads to

d

dt
‖u‖2L2 + 2λ‖u(t)‖2L2 ≤ K, (12.8)

for some constant K > 0. By Gronwall’s inequality we may conclude that

‖u‖2L2 ≤ e−2λt‖u0‖2L2 +

∫ t

0
e−2λt+2λsK ds

= e−2λt‖u0‖2L2 +Ke−2λt

∫ t

0
e2λs ds ≤ e−2λt‖u0‖2L2 +

K

2λ
.

The first result (12.4) now follows. The second result (12.5) is left as
Exercise 12.9.

Theorem 12.4 is a typical first step to check whether there is a possibility
that the long-term dynamics of a PDE is finite-dimensional. The second
estimate (12.5) helps to construct a better absorbing set in H1

0 . The idea
is to multiply (12.6) by ∆u and integrate, which yields

1

2

d

dt
‖u‖2H1

0

+ ‖∆u‖2L2 ≤ K‖u‖2H1
0

, (12.9)

for some constant K > 0, by using the upper bound of the derivative f ′

from (12.2). Integrating the last inequality between s and t we get

‖u(t)‖2H1
0

≤ 2K

∫ t

s
‖u(r)‖2H1

0

dr + ‖u(s)‖2H1
0

.

Integrating again, now with respect to s and between t − 1 and t (with
t ≥ 1) yields

‖u(t)‖2H1
0

≤ (K + 1)

∫ t

t−1
‖u(s)‖2H1

0

ds ≤ K2(1 +K), (12.10)

where the last inequality follows from (12.5). Note that the last calculation
was formal since we required regularity of u(t) that we may not have but
this can be made rigorous by either proving directly that solutions are
regular enough or by using a Galerkin approximation, which we do not
detail here.

Theorem 12.5. Suppose (12.1) satisfies (12.2) and u(x, t) is sufficiently
smooth. Then there exists an absorbing set in H1

0 .

Corollary 12.6. Suppose (12.1) satisfies (12.2) and u(x, t) is sufficiently
smooth. Then there exists a compact absorbing set in L2.
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Proof. Using Theorem 12.5 and the compact embedding of H1 into L2 the
result follows.

Reaction-diffusion equations are a good benchmark scenario for other
classes of dissipative PDEs.

Example 12.7. Another classical, albeit technically more involved, exam-
ple are the (incompressible) Navier-Stokes equations

∂tu− ν∆u+ (u · ∇)u+∇p = f(x, t), ∇ · u = 0,

where u = u(x, t) represents the velocity of a fluid in a domain Ω ⊂ Rd

(d = 2, 3), ν > 0 controls the strength of the viscosity, f is a forcing term,
and ∇·u = 0 is the incompressibility condition. One may actually eliminate
the pressure term and, with quite a few calculations, end up with

du

dt
+ νAu+B(u, u) = f (12.11)

where A is a linear operator and B represents the (quadratic!) nonlinearity
of the Navier-Stokes equations. The simplest domain to consider is Ω =
[0, L] × [0, L] ⊂ R2 with further simplifications

∫

Ω
u0(x) dx = 0,

∫

Ω
f(x, t) dt = 0

for the initial condition and the forcing term. For this case, the existence,
uniqueness and regularity theory for the Navier-Stokes equations is compli-
cated but still possible to carry out via classical techniques. Then one may
carry out similar arguments to show that (12.11) in the two-dimensional
periodic domain Ω generates a semiflow on

L2
NS :=

{

u ∈ L2(Ω) :

∫

Ω
u(x) dx = 0,∇ · u = 0, u periodic

}

as well as on the suitable Sobolev space analog

H1
NS :=

{

u ∈ H1(Ω) :

∫

Ω
u(x) dx = 0,∇ · u = 0, u periodic

}

.

In this setup, similar arguments as demonstrated above for the reaction-
diffusion case can be used to establish the existence of absorbing sets in
L2
NS as well as in H1

NS. �

Exercise 12.8. A semiflow S(t) : X → X is called point dissipative
if there exists a bounded set B such that for every initial condition u0
there exists a time tu0

such that S(t)u0 ⊂ B for all t ≥ tu0
. Prove that if

X = RN then point dissipativity implies bounded dissipativity. Hint: Use
the Heine-Borel Theorem. ♦
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Exercise 12.9. Prove the inequality (12.5) from Theorem (12.4). ♦

Exercise 12.10. Prove the inequality (12.9) under the assumptions that
u is sufficiently smooth and f ′ is bounded above. ♦

Background and Further Reading: The presentation here is based
upon [Rob01]. Other important source are [BV92, Tem97]. For more details
on the Navier-Stokes we refer to [DG95].
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13 Nonlinear Saddles and Invariant Manifolds

In this chapter we study the class of PDEs

∂tu+Au = f(u), u0 ∈ H, (13.1)

where −A : H → H is a linear, negative, self-adjoint, and sectorial operator
on a Hilbert space H and f is a sufficiently smooth globally Lipschitz
nonlinearity. From Section 11 it follows that there exists a well-defined
solution

u ∈ C0(0, T ;H) ∩ L2(0, T ;D(A1/2)), u(t) = S(t)u0 (13.2)

for a semiflow S(t) : H → H. Furthermore, we require that f is globally
bounded in H. This is not really a restriction here as we are going to be
interested here in local dynamics as well as globally attracting manifolds.
In Section 12 we showed that certain classes of PDEs have global bounded
absorbing sets and if this fact has been shown, then we can just cut off the
nonlinearity outside some large ball.

The final goal of our analysis here and in Lecture 14 is to establish that
certain PDEs of the form (13.1) essentially reduce to finite-dimensional
ODE problems.

Definition 13.1. Consider a semiflow S(t) : H → H and define an in-
ertial manifold M as a finite-dimensional, exponentially attracting, and
invariant (sufficiently) smooth manifold for S(t).

Note that invariance means here that S(t)M ⊂ M for t ≥ 0, i.e.,
formally one should say positively invariant. Instead of tackling the
inertial manifold problem directly, we are going to focus on local stable
and unstable manifolds for a saddle point for the problem

∂tu+Bu = F (t, u) (13.3)

for a nonlinearity F and a self-adjoint sectorial operator B : H → H. One
approach is to study the related inhomogeneous linear problem

∂tu+Bu = h(t) (13.4)

for a given smooth forcing h(t). Suppose H is split into an orthogonal sum

H = H+ ⊕H− (13.5)

and denote the associated projections P+ : H → H+ and P− : H → H−.
Furthermore, assume B = diag(B+, B−) is split accordingly where

〈B+u, u〉H ≤ −θ‖u‖2H for u ∈ H+ ∩D(B),
〈B−u, u〉H ≥ θ‖u‖2H for u ∈ H− ∩D(B).

(13.6)
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Note that (13.4) is equivalent to

∂tu+ +B+u+ = h+(t),
∂tu− +B−u− = h−(t),

(13.7)

where u± = P±u and h± = P±h; note that we have encountered a similar
projection splitting already in Section 2. For h ≡ 0, it follows that (13.7)
is solved by

u+(t) = e−tB+u+(0), u−(t) = e−tB−u−(0).

Due to (13.6) we may then conclude that

‖e−tB+‖L(H,H) ≤ eθt, for t ≤ 0,

‖e−tB−‖L(H,H) ≤ e−θt, for t ≥ 0,
(13.8)

which just means that u ≡ 0 is a saddle point for the linear system with
unstable eigenspace H+ and stable eigenspace H−; see also Section 1 for the
finite-dimensional saddle case and Section 8 for exponential dichotomies of
ODEs. It is instructive to see that we may bound u± in the case nonzero
forcing h 6= 0. Consider u+ and observe that Theorem 11.11 implies

u+(t) = e(t0−t)B+u+(t0) +

∫ t

t0

e(s−t)B+h+(s) ds.

However, we know that e−tB+ contracts on H+ as t → −∞ so if we let
t0 → ∞ we have

u+(t) = −
∫ ∞

t
e(s−t)B+h+(s) ds. (13.9)

Suppose that h ∈ Cb(R,H) so h is bounded and continuous with values in
H. Then it is easy to see that

‖u+‖Cb(R,H) ≤
K

θ
‖h+‖Cb(R,H)

for some constant K and for θ > 0 as introduced above. A similar estimate
also holds for u−. Therefore, it follows that

‖u‖Cb(R,H) ≤
K

θ
‖h‖Cb(R,H)

for some generic constant K > 0 independent of θ. It turns out that
working in a different norm, and also working a bit more, we can explicitly
determine a sharp value of K.
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Lemma 13.2. ([Zel13, Lem.2.2]) Consider the inhomogeneous problem
(13.4), suppose h ∈ L2(R,H) and h 6= 0. Then

‖u‖L2(R,H) ≤
1

θ
‖h‖L2(R,H),

where θ > 0 is the constant from (13.6). In particular, the solution operator
R : L2(R,H) → L2(R,H) of (13.4) has norm bounded by 1/θ.

Remark : Note that here ‖u‖2L2(R,H) :=
∫

R
‖u(t)‖2H dt. Furthermore, Lemma 13.2

can be used to obtain the estimate ‖u‖Cb(R,H) ≤ K‖u‖L2(R,H) for some constant
K > 0.

We return to the full problem (13.3) and assume that F is globally
Lipschitz

‖F (t, u)− F (t, v)‖H ≤ κ‖u− v‖H . (13.10)

uniformly for t ∈ R. Furthermore, we assume that the nonlinear problem
has a hyperbolic saddle point at u ≡ 0, i.e., the linear operator B still
satisfies (13.8) and

F (t, 0) ≡ 0.

The next step is to prove an analog of Theorem 1.13 showing persistence of
the linear spaces H± as local stable and unstable manifolds. However, the
construction turns out to be more technical than for the finite-dimensional
case.

Definition 13.3. Fix τ ∈ R. The unstable set M+(τ) ⊂ H consists of
all uτ ∈ H such that there exists a backward trajectory u(t) with t ≤ τ
with

u(τ) = uτ , ‖u‖L2((−∞,τ ],H) <∞.

Similarly, the stable set M−(τ) ⊂ H consists of all uτ ∈ H such that
there exists a forward trajectory u(t) with t ≥ τ with

u(τ) = uτ , ‖u‖L2([τ,+∞),H) <∞.

Essentially, the sets M+(τ) and M−(τ) turn out to be the unstable
and stable manifolds of the saddle point at u ≡ 0. The time τ is some-
what arbitrary and we shall mostly work with τ = 0 to simplify the no-
tation. However, we keep in mind that the following arguments work in
more generality, in fact, even uniformly in τ . The key point is that the sets
M± = M±(0) turn out to be (Lipschitz) manifolds.

Theorem 13.4. Suppose the spectral gap condition

θ > κ (13.11)
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holds where θ controls the linear contraction/expansion rates in (13.8) and
κ is the Lipschitz constant of the nonlinearity F in (13.10). Then M± are
Lipschitz manifolds, i.e.,

M± = {u± +M±(u±), u± ∈ H±},

where the maps M± : H± → H∓ satisfy

‖M±(v1)−M±(v2)‖H∓ ≤ K‖v1 − v2‖H±

for some constant K > 0.

Proof. (Sketch) We only consider M+ since the same arguments can be
adapted to M−. Suppose we could verify that for every u0 ∈ H+ there
exists a unique solution u ∈ L2((−∞, 0],H) to

∂tu+Bu = F (t, u), (P+u)(0) = u0, (13.12)

and that u depends in a Lipschitz continuous way on u0. In this scenario,
one may simply define

M+(u0) := (P−u)(0).

This mapping simply sends the element u0 to the suitable stable set via
solving (13.12); see Figure TODO. Hence it remains to solve (13.12). A
natural idea is to measure the deviation from the linear problem and intro-
duce for t ≤ 0

w(t) := u(t)− v(t), v(t) := e−tB+u0.

In particular, w then solves

∂tw +Bw = F (t, w + e−tB+u0), (P+w)(0) = 0. (13.13)

One may extend (13.13) to an equivalent equation for t ∈ R by defining

F̃ (t, u0, w) :=

{
F (t, w + v(t)) for t < 0,
0 for t ≥ 0,

and consider the problem to find

∂tw +Bw = F̃ (t, u0, w), w ∈ L2(R,H), (13.14)

see also Exercise 13.5. To solve (13.14) one considers the equivalent fixed-
point problem

w = R ◦ F̃ (·, u0, w), (13.15)
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where R is the solution operator defined in Lemma 13.2. It is natural to
try to solve (13.15) using the Banach fixed point theorem on the Banach
space L2(R,H). A key step is to derive the estimate

‖F̃ (t, u0,1, w1)− F̃ (t, u0,2, w2)‖L2(R,H) ≤ κ‖w1 + v1 −w2 − v2‖L2((−∞,0],H)

≤ κ
(
‖w1 − w2‖L2(R,H) (13.16)

+
1

θ
‖u0,1 − u0,2‖H

)

,

where Lipschitz continuity of F was used in the first inequality and the
second inequality follows by using the fact

‖v‖L2((−∞,0],H) ≤
1

θ
‖u0‖H ,

which follows from the definition of v and expansion properties of B+ con-
sidered in (13.8). Since F (t, 0) ≡ 0, one observes by taking w2 = 0 = u0,2 in
(13.16) that F̃ (·, u0, w) ∈ L2(R,H) if u0 ∈ H+ and w ∈ L2(R,H). There-
fore, (13.15) is a well-defined mapping on L2(R,H). In addition, Lemma
13.2 yields that the operator norm of R is bounded by 1/θ which implies
in combination with (13.16) that the mapping (13.15) is a contraction if
κ/θ < 1. Since this is precisely the spectral gap condition (13.11), the
existence of M+ follows. The Lipschitz continuity is discussed in Exercise
13.6.

Lastly, we note that a little bit of extra work shows that solutions in
M+ indeed decay in backward time

‖u(t)‖H ≤ Keδt‖u0‖H , t ≤ 0,

for |δ| < θ−κ, δ > 0. Hence, we could also formally write M+ =W u(0) as
the unstable manifold, and similarly for the stable manifold M− =W s(0).

Exercise 13.5. Prove that solving (13.13) is equivalent to (13.14). ♦

Exercise 13.6. Show that the mapping M+ is Lipschitz. ♦

Exercise 13.7. Construct a non-trivial (and nonlinear!) example for (13.1),
which satisfies all the assumptions used in this chapter. ♦

Background and Further Reading: The main line of argument
follows the lecture notes [Zel13]. There are many important resources de-
veloping invariant manifold theory for PDEs, see for example the material
and references in [BJ89, BLZ98].
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14 Spectral Gap and Inertial Manifolds

We continue the topic from Lecture 13 studying PDEs

∂tu+Au = f(u), u0 ∈ H, (14.1)

where −A : H → H is a linear, negative, self-adjoint, and sectorial operator
on a Hilbert space H and f is a sufficiently smooth globally Lipschitz
nonlinearity. Recall also that (14.1) generates a semiflow S(t) : H → H as
defined in (13.2) and that we required that f is globally bounded in H. In
this lecture, we want to establish the existence of an inertial manifold
M for (14.1) to demonstrate that the dynamics is low-dimensional; see
Definition 13.1.

By the Hilbert-Schmidt Theorem, it follows that A has a complete or-
thonormal system in H

Aen = λnen, 0 < λ1 ≤ λ2 ≤ · · ·

with eigenfunctions en and eigenvalues λn. Therefore, we have

v =

∞∑

n=1

vnen, vn := 〈v, en〉H

for every v ∈ H. A natural idea to construct a low-dimensional inertial
manifold is simply to project functions onto the first few (Fourier) modes

PNv :=

N∑

n=1

vnen,

and let QN := Id− PN which leads to the linear spaces

H+ := PNH, H− := QNH, H = H− ⊕H+.

As discussed in a similar setting in Lecture 13, it helps to present the PDE
14.1 as a system

∂tu+ +Au+ = f+(u+ + u−), (14.2)

∂tu− +Au− = f−(u+ + u−), (14.3)

where f+ := PNF , f− := QNF , u+ := PNu and u− := QNu. By construc-
tion we have

〈Av, v〉H ≤ λN‖v‖2H for v ∈ H+ ∩D(A),
〈Av, v〉H ≥ λN+1‖v‖2H for v ∈ H− ∩D(A).

(14.4)
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The main idea is to construct a mapping Φ : H+ → H− such that the
inertial manifold is given by

M := {u+ +Φ(u+), u+ ∈ H+}, u− = Φ(u+),

so M is parametrized by a finite-dimensional set of variables and the dy-
namics on M reduces to the ODEs

∂tu+ +Au+ = f+(u+ +Φ(u+)) (14.5)

which is also called the inertial form.

Example 14.1. We may view the situation in analogy to multiple time-
scale systems on RN . A fast-slow system is given by

εdxdτ = f(x, y, ε),
dy
dτ = g(x, y, ε),

(14.6)

where τ ∈ R, (x, y) ∈ Rm+n, the maps f, g are sufficiently smooth and
ε > 0 is assumed to be small. The variables x ∈ Rm are fast while the
variables y ∈ Rn are slow. The set

C0 := {(x, y) ∈ Rm+n : f(x, y, 0) = 0} (14.7)

is called the critical manifold. C0 is called normally hyperbolic if the
matrix

Dxf(x, y, 0)|(x,y)∈C0 ∈ Rm×m

has no eigenvalues with zero real parts. Then Fenichel’s Theorem (see
background below) states that for sufficiently small ε there exists a per-
turbed invariant manifold Cε, called a slow manifold. The manifold Cε
as well as the dynamics on Cε converges to C0 as ε → 0; see also Figure
TODO. In particular, if Cε = {x = hε(y)} for some map hε : Rm → Rn

then the effective slow dynamics on Cε is just given by

dy

dτ
= g(hε(y), y).

Note the direct analogy to the PDE case discussed above, where we also
required exponential attraction for the inertial manifold M, which would
correspond to requiring attraction of Cε for 0 ≤ ε≪ 1. Indeed, the map Φ
above is the direct analog of the parametrization hε here. �

The last example shows that it is helpful to think of M as an attract-
ing slow manifold where the fast variables u− decay very quickly and the
effective long-term dynamics is given by the slow variables u+.
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Theorem 14.2. Consider (14.1) under the assumptions stated above and
suppose furthermore that for some N there exists a spectral gap

λN+1 − λN > 2κ (14.8)

where κ > 0 is the Lipschitz constant of f . Then there exists an N -
dimensional inertial manifold M defined via Φ : H+ → H−. In particular,
for each u0 there exists v0 ∈ M such that

‖S(t)u0 − S(t)v0‖H ≤ Ke−λN t‖u0 − v0‖H
for some constant K > 0.

Proof. (Sketch) The idea is to use the previous work from Lecture 13 on
invariant manifolds for nonlinear saddles and to obtain M as a certain
unstable manifold. We define

B := A− λN + λN+1

2
Id

and observe that

〈B+u, u〉H ≤ −θ‖u‖2H for u ∈ H+ ∩D(A),
〈B−u, u〉H ≥ θ‖u‖2H for u ∈ H− ∩D(A).

(14.9)

holds due to (14.4) with θ =
λN+1−λN

2 . For simplicity we assume f(0) ≡ 0.
Define

ũ(t) := eαtu(t), α :=
λN + λN+1

2
.

This transforms (14.1) to

∂tũ+Bũ = F (t, ũ), F (t, ũ) := eαtf(e−αtũ). (14.10)

It can be checked that F is also Lipschitz continuous with the same Lip-
schitz constant κ > 0. We want to apply Theorem 13.4, which holds for
equations of the form (14.10). The assumptions about A and the definition
of B easily lead to the correct contraction and expansion rates (13.6) for
B. The spectral gap condition in Theorem 13.4

θ > κ

is immediately guaranteed by (14.8). Futhermore, F (t, 0) ≡ 0 since f(0) ≡
0. Hence, the existence of an unstable manifold M+ at ũ = 0 for (14.10)
follows. One may then check that M+ is indeed invariant under the semi-
flow S(t) of the original problem (14.1). It requires quite a bit of extra work
to then also show that trajectories must track it exponentially in forward
time; the idea is to use that e−αtũ(t) = u(t) by construction so M+ = M
is indeed the inertial manifold we wanted to construct.
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Remark : Theorem 14.2 can be generalized in various directions. For example, the
smoothness of M can be improved in many cases but usually invariant manifolds
only have finite smoothness as this phenomenon already occurs for ODEs. There
are also other common alternative proof techniques, e.g., a method based upon
invariant cones and the squeezing property. See background references below
for more details.

Example 14.3. A classical example for the existence of inertial manifolds
are dissipative reaction-diffusion equations, such as

∂tu− ∂2xxu = f(u), (x, t) ∈ Rd × [0,+∞), u = u(x, t), (14.11)

for a suitable sufficiently smooth nonlinearity f : R → R on a bounded
interval Ω ⊂ R1 with Dirichlet boundary conditions u(x) = 0 for x ∈
∂Ω. We have seen in Lecture 12 that under certain assumptions on the
nonlinearity an absorbing set exists. In such a case, we may cut off the
nonlinearity and assume that f is indeed globally Lipschitz. Since A = −∆,
we know from Example 4.3 that the eigenvalues satisfy

λN = KN2, as N → +∞, (14.12)

for some constant K > 0 depending on the length of the interval; in fact,
(14.12) is a version of Weyl’s law

λN ∼ KN2, as N → +∞,

which holds for many other situations involving the Laplacian. We find
from (14.12) that

λN+1 − λN = K(N + 1)2 −KN2 = K(2N + 1) > 2κ

for some sufficiently large N . Therefore, the spectral gap condition (14.8)
holds and Theorem 14.2 implies the existence of an inertial manifold. �

It should be noted that although it is theoretically very important to
know that a certain PDE is effectively finite-dimensional, it is not always
immediately useful in practical applications. For example, the dimension
of the inertial form ODE system (14.5) could be extremely large or the
mapping Φ is difficult to compute.

Example 14.4. Consider the Kuramoto-Sivashinsky equation

∂tu+ ∂4xxxxu+ 2p∂2xxu = ∂x(u
2) (14.13)

with a parameter p ∈ R posed on an interval Ω = [0, π], (x, t) ∈ Ω× [0,∞),
u = u(x, t) and boundary conditions

u(x) = 0, (∂2xxu)(x) = 0, for x ∈ ∂Ω = {0, π}.
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One may show that (14.13) is well-posed and dissipative on H := L2(Ω)
with an absorbing ball in a suitable space. However, Theorem 14.2 is not
directly applicable as the nonlinearity f(u) = ∂x(u

2) is not a map from H
to H. �

The last example shows the need to slightly generalize Theorem 14.2.
Consider (14.1) on the Hilbert space H and define

Hs := D(As), s ∈ R, ‖v‖2Hs =

∞∑

n=1

λ2sn 〈v, en〉2H .

Note that for s > 0 the definition of Hs is just Definition 11.10 of fractional
operator norms while for s < 0 one just takes Hs as the completion of H
with respect to the norm ‖ · ‖Hs ; furthermore H0 = H.

Remark : One also frequently finds the definition Hs := D(As/2) with ‖v‖2Hs =
∑

∞

n=1 λ
s
n〈v, en〉2H in the literature and one just has to keep track of the factor of

2 to match the different definitions.

Suppose now f is a Lipschitz map from Hα1 to Hα2

‖f(u)− f(v)‖Hα1 ≤ κ‖u− v‖Hα2 (14.14)

for α1 < α2 and u, v ∈ Hα2 .

Theorem 14.5. Consider (14.1) with the assumptions stated above and
suppose f satisfies (14.14) for α2 = 0 and some α1 ∈ (−2, 0]. Furthermore,
suppose the spectral gap condition

λN+1 − λN

λ
−α1/2
N+1 + λ

−α1/2
N

> κ (14.15)

holds, then there exists a Lipschitz inertial manifold.

The exercises give a guide how to apply the last result to the Kuramoto-
Sivashinsky equation to prove the existence of an inertial manifold.

Exercise 14.6. Consider Example 14.4 and show that A := ∂4xxxx+2p∂2xx+
p2 + 1 is positive and self-adjoint on D(A). Re-write (14.13) in the form
(14.1) using A, i.e., compute f . ♦

Exercise 14.7. Continue with Exercise 14.6 and prove that f is Lipschitz
with α1 = −1/2 and α2 = 0 once the nonlinearity f has been cut off
properly. ♦

Exercise 14.8. Continue with Exercises 14.6-14.7 and check that A has
eigenvalues λN = (N2+p)2+1 and use this result to verify that the spectral
gap condition (14.15) must hold for sufficiently large N . ♦
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Background and Further Reading: We mainly followed the lecture
notes [Zel13] in this section. Other important sources on inertial manifold
theory are [Rob01, Tem97]. An overview of finite-dimensional multiple time
scale dynamics can be found in [Kue15].
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semigroup, 67, 70
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duality pairing, 16
Duhamel formula, 58
Dunford integral, 62
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ground state, 39

Hamiltonian
function, 30
system, 30

heat equation, 24
heteroclinic orbit, 28
homoclinic orbit, 28
homogeneous boundary conditions, 4
homogeneous solution, 14
hyperbolic

normally, 78
steady state, 8

implicit function theorem, 10
inertial

form, 78
manifold, 72, 77

infinitesimal generator, 61
initial condition, 3
invariant

linear eigenspace, 8
invariant cone, 80
invariant manifold, 72

Kuramoto-Sivashinsky equation, 80

Laplacian, 3
Lin gap, 30
Lin’s method, 30
linear spreading speed, 34
linear stability, 20
long-wave instability, 23
Lyapunov-Schmidt method, 11

manifold
critical, 78
inertial, 72, 77
invariant, 72
slow, 78
stable, 8
unstable, 8

mass conservation, 24

method of steepest descent, 35
mild solution, 64
modulation equation, 52
Morse index, 45
multiple scales, 52

Nagumo equation, 3
Navier-Stokes equations, 70
Neumann boundary conditions, 3
Newell-Whitehead-Segel equation, 54
non-autonomous, 44
nontrivial branch, 14
nonzero speed, 21
normal form, 7
normally hyperbolic, 78
nullspace, 11

omega limit set, 28
operator

sectorial, 62

pattern, 51
period, 28
periodic orbit, 28
perturb, 52
perturbation, 27
pitchfork bifurcation, 9
Poincaré inequality, 68
point dissipative, 70
positively invariant, 72
potential, 40
propagator, 44
pulse solution, 28
pushed front, 36

range, 11
reaction term, 4
resolvent, 62
roll solution, 55

saddle, 8
saddle-node bifurcation, 7
Schrödinger equation
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nonlinear, 59
nonlinear, focusing, 49

sectorial operator, 62
self-adjoint, 42
semiflow, 67
semigroup

analytic, 61
nonlinear, 67
strongly continuous, 61

separation of variables, 24
set

absorbing, 67
sine-Gordon equation, 59
slow

manifold, 78
variables, 78

soliton, 26
solution

mild, 64
spectral

gap, 79
gap condition, 74

spectral gap, 21
spectral projection, 45
spectrum, 20
spreading point, 35
squeezing property, 80
stability

local asymptotic, 6
of travellwing waves, 38

stable
manifold, 8
node, 32
set, 74

Stable-Unstable Manifold Theorem,
8

standing wave, 25
stationary, 4
strongly continuous semigroup, 61
Sturm-Liouville

operator, 39

theory, 39
subcritical pitchfork, 17
supercritical pitchfork, 17
Swift-Hohenberg equation, 4, 51, 56,

64

thin film equation, 23
topologically equivalent, 7
transcritical bifurcation, 10, 17
translation invariance, 42
transversality condition, 21
travelling, 28

pulse, 28
wave train, 28

travelling wave
ansatz, 25

trivial solution, 14
two-scale, 52

unstable
manifold, 8
node, 32
set, 74

variation-of-constants, 58

wave equation, 24
wave number, 33
wave speed, 25, 32

linear spreading, 34
wavevector, 51
weighted inner product, 39
Weyl’s law, 80
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